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Chapter 1

Introduction and Overview

Contamination of military sites including soil and groundwater by energetic materials

and chemical warfare agents is a growing problem [1–8]. To avoid health hazards associ-

ated with these compounds, it is necessary to remediate the contaminated sites. Effective

remediation requires knowledge about environmental fate and impact of the contaminants.

While the fate of chemical warfare agents are well studied [6–8], the impact of certain

energetic materials in the environment is relatively unknown. So the current focus is deter-

mining environmental fate of energetic materials and developing detection and filtration

schemes for chemical warfare agents.

In the last few decades, the field of energetic materials witnessed major advancements in

terms of development of new energetic materials that cause little or no damage to the people

handling it from involuntary triggering of the munitions while maintaining the explosive

performance of their predecessors [9]. The enormous volume of damages inflicted upon both

personnel and equipment by unintended detonation of munitions for several years motivated

this development. As a result, munitions called as Low Vulnerability Ammunitions (LOVA)

or Insensitive Munitions (IM) that possessed excellent mechanical properties to resist exter-

nal damage such as low shock sensitivity and high thermal stability emerged [10]. Con-

current with the development of IM compounds, a growing emphasis has been placed on

”green” munitions, i.e. energetic materials with significantly reduced potential for environ-

mental damage. Explosives such as trinitrotoluene (TNT), cyclotrimethylenetrinitramine

(RDX) and sym-cyclotetramethylene-tetramitramine (HMX) have been found in ground-

water and soil due to their extensive usage and costs of remediation are estimated in the
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billions of dollars [11]. It is hoped that new energetic materials may be developed with

low toxicity and persistence, thereby minimizing risks to public health and reducing or

eliminating the need for costly remediation.

The fate of an energetic material in soil, water or atmosphere can be determined by

studying the interaction between the compound and the target medium. These interactions

are described in part by partitioning of the compound of interest between two different

mediums which is represented by various partition or the distribution coefficients. Two key

partition coefficients used to assess a compound’s impact in air, water and organic mediums

are octanol-water partition coefficients (log Kow) and Henry’s law constants (log H). For

dilute aqueous solutions, the Henry’s law constant is the ratio of the solute’s partial pressure

and its aqueous concentration. The octanol-water partition coefficient is the ratio of the

concentration of a neutral chemical species in octanol and in water at equilibrium and is a

measure of hydrophobicity/lipophilicity or hydrophilicity of a compound. It is also related

to bioaccumulation and bioavailability and has been a key parameter in drug design for

decades [12,13].

Given the importance of log Kow and log H as predictors of activity in biological and

environmental sciences, numerous experimental [12] and theoretical methods exist for pre-

dicting them. The need for synthesis of each compound of interest so that its physico-

chemical properties may be measured by experiment is time consuming and costly. Most

of the theoretical methods available for predicting partition coefficients are based on frag-

ment/group or bond contribution methodology [14–21]. Other methods include Quantita-

tive Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Rela-

tionship (QSPR) models [22–28], which relate molecular structures to biological activ-
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ity (QSAR), or a particular physical property (QSPR). These activities or properties are

expressed as a function of the partition coefficients. QSAR/QSPR use molecular descrip-

tors (topological, topographical and quantum chemical) derived from a training set of com-

pounds. Training sets may contain anywhere from a few hundred to tens of thousands of

molecules and in general, the larger the training set, the better the predictive capability.

Overall, most QSPR do an excellent job of predicting physical properties for molecules

with similar molecular structure as those in the training set. However, for molecules that

differ significantly from those used in the optimization of the QSPR, which includes most

energetic materials, there is a concern that the predictions of QSPR may not be repre-

sentative of experimental data [29, 30]. Other theoretical methods that offer promise are

continuum solvent methods such as COSMO, SM (Solvation Model), GB/SA (Generalized

Born/Surface Area) models [31–36] and molecular modeling or simulation methods coupled

with Free Energy Perturbation (FEP) [37, 38]. Continuum solvent methods have a few

drawbacks over molecular simulation which are illustrated by Jorgensen et al. [39]. So,

molecular simulation emerges as the most accurate theoretical method to predict physico-

chemical properties for energetic materials of interest.

Nerve agents are a certain group of toxic chemical warfare agents that are organophos-

phates. Exposure to large amounts of nerve agent results in death within 10 to 15 minutes.

Nerve agents act by disrupting the nervous system [40]. They rapidly react with a serine

hydroxyl group in the active site of acetylcholinesterase (AChE), an enzyme that relaxes

the activity of the neurotransmitter, acetylcholine, and form a phosphate or phosphonate

ester [40]. The resulting phosphylated enzyme regenerates very slowly, making the enzyme

inaccessible for acetylcholine [41]. The chiralty around the phosphorous atom also has an
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impact in determining the extent of toxicity of the nerve agent [41, 42]. Due to the acute

and chronic toxicity of nerve agents and the increased threat of chemical weapon attack by

terrorist groups, there has been considerable focus in the development of detection schemes

for the nerve agents.

Promising technologies of detection include, molecularly imprinted polymers [43,44] or

polymer composites [45], electrochemical bio-sensors [46] and metal oxide thin films and

nanowires [47–51]. In addition to sensing applications, metals [52] and metal oxides [53–56]

have been studied extensively as potential catalysts for the decomposition of chemical

agents into non-toxic substances. Although metal oxide based sensors exhibit high sen-

sitivity, they suffer from poor selectivity, leading to false positives triggered by relatively

innocuous materials, such as methanol. Prefiltering and concentration schemes involving

physical adsorption on nanoporous silica and carbon pores have been proposed as a means

of improving detection selectivity for chemical warfare agents [57–59]. While the chemical

adsorption of organophosphates on metals and metal oxides is known to occur through a

common mechanism of oxygen binding to the surface, much less is known about specific

substrate-adsorbate interactions during physical adsorption.

Carbon related adsorbents are promising candidates to accomplish separations in terms

of framework, stability and efficiency. Carbon adsorbents represent a major class of adsor-

bents that range from simple graphitic pores to carbon nanotubes. The selectivity of each

class of adsorbents depends on the nature of solid-fluid and fluid-fluid interactions, struc-

ture of the pore and system conditions such as temperature and pressure. The adsorption

behavior of the nerve agents in carbon substrates have to be determined as a preliminary

step to the sensing process. Molecular modeling is well suited for studying chemical warfare
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agents due to the hazardous nature of these compounds.

The research presented in this thesis is an effort to use molecular simulation as a the-

oretical tool to address the environmental issues emerging from energetic materials and

nerve agents. The field of molecular simulation has seen rapid growth due to advances

in computer hardware resources. Given only a molecular structure, atomistic computer

simulations may be used to calculate nearly any physical property associated with that

molecule. After a series of advancements in algorithms [60–65], simulations have been used

extensively for the prediction of various thermophysical properties. In this era of super-

computing, many complex materials and processes may be simulated in less time with high

precision and accuracy across a parallel platform of multiple processors. Also, simulations

offer valuable molecular-level insights into the nature of specific interactions and help in

better understanding the chemical systems and processes.

The key to accurate predictions of thermophysical properties is the force field or molec-

ular model. A force field is a set of parameters used to represent the intramolecular and

intermolecular interactions. In this research, force fields have been developed for two class

of compounds: energetic materials and nerve agents to predict various thermophysical

properties. For energetic materials, atomistic molecular dynamics simulations are used to

predict physical properties with the developed force fields that may be used to predict

the environmental fate of these compounds. In this context, octanol-water partition coef-

ficients and Henry’s law constants are determined. Besides partition coefficients, critical

parameters, vapor pressure, boiling point, acentric factor, heats of vaporization, lattice

parameters, crystal density and melting point are also predicted. For nerve agents, the

developed forcefields are used to determine their vapor-liquid coexistence curves, vapor
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pressures, critical points, heats of vaporization and second virial coefficients through atom-

istic Monte Carlo simulations. In addition to the bulk condensed phase properties, pure

and water-organophosphate mixture isotherms over carbon slit pore were determined using

atomistic Monte Carlo simulations.

1.1 Research Outline

This dissertation presents research that involves predicting thermophysical properties of

some hazardous chemicals such as explosives and chemical warfare agents through atomistic

molecular simulation by building new molecular force fields. The thermophysical properties

of interest are partition coefficients, boiling points, critical points, vapor pressure, vapor-

liquid equilibria, crystal density, lattice parameters, melting point and adsorption isotherms.

In Chapter 2, all the existing force fields and the methodology for building the new

force field are discussed. The potentials for non-bonded and bonded interactions are pre-

sented. Non-bonded interactions include the Lennard-Jones and the coulombic contribution

while the bonded interactions include bond stretching, bond angle bending and torsional

potentials.

In Chapter 3, description of simulation methods employed in this research are presented.

The statistical thermodynamics background associated with each method is also discussed.

In Chapter 4, ab initio studies conducted on the energetic materials are presented.

Impact sensitivity correlations, equilibrium structures and calculation of rotational barriers

are presented.

In Chapter 5, newly developed force fields for energetic materials are presented. Also,

the computational methodologies and simulation details for prediction of condensed phase

properties such as partition coefficients, vapor-liquid equilibria, vapor pressure, critical
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points, boiling points are discussed. This chapter ends with a results and discussion section,

where the predicted thermophysical properties are presented.

In Chapter 6, force fields and calculations for predicting solid phase properties of ener-

getic materials of interest such as lattice parameters, crystal density and melting point are

presented. Also, different melting point methods used for predicting melting points are also

discussed. The predicted solid phase properties are used to validate the developed force

fields.

In Chapter 7, force fields developed for the nerve agents are presented followed by a

description of the simulation methodologies. The predicted boiling points, critical points,

heats of vaporization, vapor pressure, vapor liquid equilibria and adsorption isotherms are

presented.

In Chapter 8, the conclusion for the dissertation is presented followed by future work

associated with this research.
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Chapter 2

Force Field Development

2.1 Introduction

The accuracy of molecular simulation is dependent entirely on the force fields used to

describe the interactions of atoms with each other. Force fields can be conveniently split

into two types of interactions: bonded and non-bonded. Bonded interactions account for

the conformational structure of the molecule and include bond stretching, bond bending

and torsion around the various bonds. Non-bonded interactions describe the energetics

of atom-atom interactions and are described by an atom-atom pair interaction potential.

Because of the importance of force fields, numerous generalized force field development

efforts were undertaken. These include OPLS [66–75], AMBER [76–78], CHARMM [79–83]

and Gromacs [84] in the biological sciences and OPPE [85] and TraPPE (Transferable

Potentials for Phase Equilibria) [86–96,98] in engineering and physical sciences.

While each of the aforementioned force fields is based on the idea of ”transferable”

potential parameters, i.e., parameters for atoms or functional groups that are independent

of bonding environment, the philosophies of parametrization differ. Force fields in the bio-

logical sciences are typically fit to reproduce properties of the condensed phase at room

temperature, such as heat of vaporization and liquid density and may also be fit to repro-

duce ab initio derived potential energy surfaces of the target molecule with various probe

atoms [110]. The parameters for force fields developed for the prediction of phase behavior

and other physical properties, on the other hand, are optimized to reproduce pure compo-

nent, and sometimes mixture [97,98] vapor-liquid equilibria over the entire phase diagram
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from the boiling to critical point. The result is improved predictive capability with respect

to physical properties and phase behavior when used in mixture calculations [97–99]. In

this work, force fields are developed for energetic materials and warfare agents based on

the TraPPE force field.

2.2 Model

In the TraPPE force field, the overall energy of the system is given by a collection of

pair-wise additive potentials summed over all interaction sites of all molecules in the system

U =

nmolec
∑

i=1

nsite
∑

j

Uij (2.1)

This energy can be further decomposed into inter- and intra-molecular interactions

U = Uintra + Uinter (2.2)

The quantities Uintra and Uinter are commonly referred to as bonded and non-bonded

interactions, respectively.

2.2.1 Bonded

Bonded interactions included bond vibrations, angle bending and rotation around dihe-

dral angles. For small molecules, it is possible to achieve accurate results by neglecting

vibrational modes and treating the entire molecule as a single rigid body. However, for

larger molecules, or those where the vibrational modes are not as constrained, it is impor-

tant to model vibrational degrees of freedom so that phase space is sampled correctly during

the simulation. Bond stretching and bond angle bending are both controlled by a harmonic
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Figure 2.1: Ab initio prediction of barriers to N-C bond stretching in DNAN. Symbols
correspond to HF/6-31+g(d,p) calculations while line is a fit of harmonic potentials to the
ab initio data.

potential. The bond stretching potential is

Ubond =
kb
2

(r − r0)
2 (2.3)

where r is the measured bond length, r0 is the equilibrium bond length and kb is the force

constant. Bond angle bending potential is given by

Ubend =
kθ
2

(θ − θ0)
2 (2.4)

where θ is the measured bond angle, θ0 is the equilibrium bond angle and kθ is the force

constant. Representative ab initio data used for the parametrization of bond stretching and

bending constants for the NO2 group are shown in Figure 2.1 and Figure 2.2 for N-C bond

stretching and bond angle bending for O-N-O in the energetic material, 2,4-dinitroanisole

(DNAN).

Interactions between atoms that are three bond lengths apart are governed through a
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Figure 2.2: Ab initio prediction of barriers to O-N-O bond bending in DNAN. Symbols
correspond to HF/6-31+g(d,p) calculations while line is a fit of harmonic potentials to the
ab initio data.

torsional potential in the form of a cosine series

Utors = Σkφ[1 + cos(nφ− f)] (2.5)

where φ is the dihedral angle, n is the multiplicity, f is the phase angle and kφ is the force

constant. The inclusion of a phase angle is required in cases where barriers to dihedral

rotation are not symmetric around 180◦. Representative data are presented for barriers to

dihedral rotation about the C-N bond connecting the -NO2 group to the aromatic ring in

DNAN in Figure 2.3.

Equilibrium bond lengths and angles were determined from ab initio HF/6-31g+(d,p)

calculations. All the force constants were determined by running relaxed potential energy

scans in Gaussian at the same level of theory and basis set and fitting to the scan data, the

corresponding potential for vibration, angle bending and torsion. The scans were relaxed in

nature: fixing the dihedral angle of interest in the optimized structure at each level of theory

and reoptimizing all other internal coordinates at the same level of theory to minimize the
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Figure 2.3: Ab initio prediction of barriers to dihedral rotation about the C-N bond (para
position) in DNAN. Symbols correspond to HF/6-31+g(d,p) calculations while line is a fit
of the cosine series to the ab initio data.

total energy.

2.2.2 Non-Bonded

Non-bonded interactions between atoms in each molecule are represented with a stan-

dard 12-6 Lennard-Jones potential with a coulombic term for partial charges.

U(rij) = 4εij

[

(

σij
rij

)12

−
(

σij
rij

)6
]

+
qiqj

4πε0rij
(2.6)

where rij , εij , σij, qi, and qj are the separation, LJ well depth, pseudo-atom diameter and

partial charges, respectively, for the pair of interaction sites i and j and ε0 is the permittivity

of vacuum. This approach treats all interactions as effective interactions, i.e., the Lennard-

Jones r−6 term implicitly includes many-body dispersive interactions and the additional

contributions arising from instantaneous dipole-quadrupole r−8 and quadrupole-quadrupole

r−10 interactions. In a similar way, the partial charges mimic both the first-order electro-

static and second-order induction forces. Therfore it is not possible to accurately determine,
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for example, σii from experimentally determined atom diameters and instead, the param-

eters ǫii, σii and qi in this equation are derived from a combination of quantum chemical

calculations, and empirical fitting to experimental data. The cross interaction parameters

for unlike atoms were determined through Lorentz-Berthelot combining rules [100,101].

σij = (σii + σjj)/2 (2.7)

εij =
√
εiiεjj (2.8)

Determination of Partial Charges

The determination of partial charges is complicated by the fact that they are not a

quantum mechanical observable, hence the values of the partial charges derived from quan-

tum chemical data are highly dependent on the modeling scheme, and to a lesser extent

the choice of quantum mechanical (QM) theory and basis set. Some of the more com-

mon schemes for extracting partial charges from QM data are Mulliken [102] and natural

population analysis [103]. However, partial charges derived from Mulliken analysis have

been shown to depend strongly on basis set [104]. An alternative scheme for determin-

ing partial charges used in this work, and in the development of other force fields, such as

CHARMM and AMBER, is to calculate partial charges by fitting to reproduce electrostatic

potential energy surfaces (ESP), which are observable directly from quantum mechanics.

There are a number of schemes for doing this, including Merz-Kollman [105], CHELP [106],

CHELPG [107] and PQDP [108].

In this work, partial charges were determined using the CHELPG (Charges from Elec-

trostatic Potentials using a Grid based method) methodology in Gaussian [109]. The partial
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Figure 2.4: Electrostatic potential energy surface for DNAN from CHELPG scheme (left);
Structure of DNAN with the charges on each atom site (right).

charges from CHELPG scheme were tuned whenever necessary to reproduce certain ther-

mophysical properties. A schematic of the electrostatic potential surface generated from

gaussian using CHELPG methodology is presented in Figure 2.4. Structures for the com-

pounds of interest were optimized using Hartree-Fock theory and the 6-31+(d,p) basis set.

Geometry optimizations were performed from multiple initial configurations to confirm the

optimized structure was the true lowest energy state. The combination of Hartree-Fock

theory and 6-31+g(d,p) basis set were chosen based on past work by our group and others,

which show that this relatively low level calculation provides the best estimate of partial

charges for use with the empirical potential models of interest here [110,111]. The electro-

static potential energy surfaces (ESP) were determined for the optimized structures and

partial charges determined by fitting to reproduce the ESP.

Determination of Lennard-Jones Parameters

The TraPPE force field was developed for high accuracy predictions of vapor-liquid

coexistence of complex multi-component mixtures. Typically, Lennard-Jones parameters

are optimized to reproduce experimental vapor-liquid coexistence curves to within 1% of
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experimental data. New molecules are parametrized in a stepwise fashion in an effort to

minimize the total number of parameters and constrain the optimization effort so that only

one new parameter is being optimized at a time. For example, the TraPPE United-Atom

force field for normal alkanes uses four unique parameters to describe the entire alkane

homologous series. These are the Lennard-Jones ǫ and σ for the CH2 and CH3 groups.

Parameters for the CH3 group were optimized from the simulations of ethane. The CH2

parameters were optimized from simulations of n-hexane, using the CH3 group parameters

previously optimized in simulations of ethane. This same CH3 group was later used in the

development of force fields for ketones, aldehydes, ethers, alcohols and nitro compounds,

demonstrating perhaps the most important facet of force field parametrization: transfer-

ability. The idea of transferable force field parameters is at the heart of the methodology

used in this work. In essence, parameters for various functional groups are said to be inde-

pendent of bonding environment, allowing for the construction of new molecules from a

library of existing parameters. Using the idea of transferability, a molecule was split into

funtional groups and the parameters for each of them were taken from similar groups of

other compounds for which TraPPE force field has already been developed.
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Chapter 3

Computer Simulation and

Statistical Thermodynamics

3.1 Introduction

Computer simulation yields information about the microscopic properties and statis-

tical mechanics is required to translate those into macroscopic terms. An experimentally

observable macroscopic property is given by [112],

Aobs =< A >ens (3.1)

where < A >ens is the ensemble average of A. The ensemble average is obtained by cal-

culating A in every possible state of the system and taking a weighted average of A from

all possible states. Four types of ensembles that are commonly used are: the microcanoni-

cal (NVE), canonical (constant NVT), the isothermal-isobaric (constant NPT), the grand

canonical ensemble (constant µVT). Simulations can be classified into two types : Monte

Carlo (MC) and molecular dynamics simulation (MD). While Monte carlo scheme calcu-

lates the static properties of a system, molecular dynamics computes both the static and

the dynamic or time dependent properties. In the following sections, details of different

MC and MD techniques relevant to this work are presented.

3.2 Simulation Techniques

In this section, various simulation techniques used in this research and the statistical

mechanics behind each technique is discussed in detail. The octanol-water partition coef-



www.manaraa.com

17

ficients and the Henry’s law constants of the energetic materials were determined by Free

Energy Perturbation (FEP) technique using NPT ensemble molecular dynamics method.

The vapor-liquid equilibria of EM compounds were simulated with Gibbs-Duhem Integra-

tion while Grand Canonical Histogram Reweighting Monte Carlo (GCHRMC) technique

was used for chemical warfare agents. The solid phase properties of energetic materials

were simulated using NPT MD method. Finally, the adsorption of CWAs in carbon slit

pores were modeled using Grand Canonical Monte Carlo (GCMC) and Gibbs Ensemble

Monte Carlo (GEMC) methods. All the Monte Carlo methods used a coupled-decoupled

configurational-bias Monte Carlo (CBMC) technique [113] for insertion of molecules into a

dense phase.

3.2.1 Free Energy Calculations

Free energy is critical in calculating the partition coefficients. Free energy calculations

via molecular simulation can be performed by three different methods [37,38]: free energy

perturbation [114], thermodynamic integration [115] and slow growth [116]. Each method

differs in how the free energy change is calculated. In the first method, free energy difference

between two states a and b is represented by,

∆A = −kbT ln < e−∆Ĥ/RT >a (3.2)

where ∆H = Ĥb − Ĥa, ∆A is the Helmholtz free energy and <>a is the ensemble average

over a system at state a. If the difference between the initial and final states is large,

accurate ensemble average can be calculated using a multistep perturbation simulation.

In a mutistep simulation, transformation between states a and b is performed in several

intermediate steps involving non-physical states along a pathway that connects a to b. This
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pathway is represented by a variable called ”coupling parameter” λ, that makes the free

energy a continuous function of it between the initial and the final states. The hybrid

Hamiltonian of the system as a function of the coupling parameter λ is represented as,

Ĥ(λ) = λĤb + (1 − λ)Ĥa (3.3)

where Ĥa and Ĥb are Hamiltonian of initial and final states respectively. λ varies from

0 (Ĥ = Ĥa) to 1 (Ĥ = Ĥb). In the thermodynamic integration method, the free energy

difference between two system a and b is represented by,

∆A =

∫ λ=1

λ=0
<
∂Ĥ

∂λ
>λ dλ (3.4)

The ensemble average of the derivative of the Hamiltonian wih respect to λ is computed at

different values of λ followed by numerical integration to obtain the free energy difference.

In the last method which is the slow growth technique, the Hamiltonian is changed by an

infinitesimal amount over each λ value resulting in the following equation,

∆A =
λ=1
∑

λ=0

(Ĥλ+1 − Ĥλ) (3.5)

where Ĥλ is the Hamiltonian for a given λ and Ĥλ+1 is the Hamiltonian for the next larger

λ. This equation is a result of an assumption that free energy difference is small and so

∂Ĥ/∂λ = ∆Ĥ/∆λ. The free energy perturbation is discussed in detail in the following

section.
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Free Energy Perturbation

The fundamental equation for calculating the free energy difference between two differ-

ent states by FEP is given by,

∆Aa→b = −kbT ln < exp[−Ĥb(r, p) − Ĥa(r, p)

kbT
] >a (3.6)

where kb is the Boltzmann constant, T is the temperature and Ĥa(r, p) and Ĥb(r, p) are the

Hamiltionians which describes the interactions between particles in states a and b in terms

of coordinates r and conjugate momenta p of the particles. The modified form of the free

energy difference equation with the coupling parameter incorporated is given by,

∆Aa→b = −kBT
N

∑

k=1

ln < exp[−Ĥb(r, p;λk+1) − Ĥa(r, p;λk)

kBT
] >k (3.7)

whereN is the number of intermediate states between a and b. Ensembles in free energy per-

turbation technique can be generated using either MC or MD simulation. In this research,

MD simulation will be used for FEP calculations where the ensemble average is the time

average of exp(-∆Ĥ/kbT ) where,

∆Ĥ = Ĥb − Ĥa (3.8)

There are two different approaches to perform a free energy perturbation calculation in

terms of the molecular topology: single and the dual topology. In the single topology

method, the molecular topology of just one state (either a or b) is used and transformed

to another during the course of the simulation. In contrast, the double topology paradigm
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uses two independent topologies each for the initial and the final state simultaneously. In

this kind of topology, three groups of atoms exist: atoms describing the initial state a of

the system, atoms describing the final state b and those atoms that do not change during

the simulation which is the environment. The atoms that correspond to initial state a do

not interact with atoms that belong to the final state b throughout the entire simulation.

3.2.2 Gibbs Duhem Integration

Gibbs-Duhem integration [62] was used to determine the vapor-liquid coexistence curves

and the vapor pressures for the energetic materials. With the knowledge of an initial

coexistence point, the Clapeyron equation can be integrated to provide an estimate of

coexistence points at other temperatures. The Clapeyron equation is given by,

[

d lnP

dβ

]

σ

= − ∆h

βP∆ν
(3.9)

where P is the pressure, β = 1/kT , ∆h is the difference in molar enthalpies of the coexisting

phases, ∆v is the difference in molar volumes and σ indicates that the derivative is taken

along the saturation line. The method allows for the prediction of the saturation pressure

at a temperature ∆T away from the known coexistence point as well. The first coexistence

simulation was carried out by integrating the Clapeyron equation with trapezoidal rule

predictor-corrector method, followed by two simulations with mid-point predictor-corrector

method. All subsequent simulations used the higher order Adams predictor-corrector inte-

gration scheme which produced accurate results. The following equations represent the

predictor-corrector methods.

Trapezoid :

yi+1 = yi + hfi (3.10)
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yi+1 = yi +
h

2
(fi+1 + fi) (3.11)

Midpoint :

yi+1 = yi−1 + 2hfi (3.12)

yi+1 = yi−1 +
h

3
(fi+1 + 4fi + fi−1) (3.13)

Adams :

yi+1 = yi +
h

24
(55fi − 59fi−1 + 37fi−2 − 9fi−3) (3.14)

yi+1 = yi +
h

24
(9fi+1 + 19fi − 5fi−1 + fi−2) (3.15)

where y is lnP , h is the difference in reciprocal temperature β, f is the integrand (d lnP/dβ)

and subscript i + 1 refers to the current simulation. The first equation in each method

refers to the predictor formula and the second one is the corrector formula. The pressure

is specified using the predictor formula,

P = P0 exp[f0h] (3.16)

where P0 is the initial pressure and f0 corresponds to the initial coexistence data. This

pressure is then updated using the corrector formula after a simultaneous liquid and gas

simulation at P0

P = P0 exp[h(f0 + f1)/2] (3.17)

where f1 is the estimate from the simulation in progress and it continues with the new

pressure.
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3.2.3 Grand Canonical Monte Carlo-Histrogram Reweighting

Grand Canonical Histogram Reweighting Monte Carlo (GCHRMC) method was used

to determine phase coexistence properties of the chemical warfare agents. In GCMC, the

system is coupled to a reservoir and the chemical potential, temperature and the volume

are fixed and the number of particles allowed to fluctuate. Equilibrium is reached when the

chemical potential and temperature of the system and reservoir are equal. In the histogram

reweighting technique, multiple histograms containing the number of particles and the

energy are collected. The probability of observing a configuration with given number of

particles and configuration energy E is

P (N,E) = Ω(N,V,E)exp(βµN)exp(−βE)/Ξ(µ, V, T ) (3.18)

where Ω(N,V,E) , is the microcanonical density of states, µ is the chemical potential,

β = 1/kbT and Ξ(µ, V, T ) is the grand canonical partition function given by

Ξ(µ, V, T ) =
∑

N

1

N !

1

Λ3N
exp(βµN)

∫

d~r d~p exp(−βH(~r, ~p)) (3.19)

where Λ =
√

h2/2πmkbT is the de Broglie wavelength of the particles and E(N) is the

configurational energy of the system with coordinates rN . Multiple simulations are run to

collect multiple histograms (one histogram for each simulation) to cover all thermodynamic

states of interest. Histograms starting from the vapor phase to the dense liquid phase are

collected by running simulations at different chemical potential and temperature. Between

the vapor phase and the liquid phase, a bridge phase histogram is obtained by running the

simulation close to the critical point. The bridge phase essentially connects the vapor and
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the liquid phase. Additional simulations are performed at lower temperatures in both the

liquid and vapor phases to cover the entire coexistence curve.

A plot of histograms collected as a function of number of molecules for sarin is shown in

Figure 3.1. The neighboring histograms should have reasonable overlap for determination

of accurate phase coexistence points. The histograms are patched according to the method

of Ferrenberg and Swendsen [64,117]. The distribution by patching R histograms together

is given by

P (N,E) =

R
∑

n=1

Pn(N,E) exp[β(µN − E)]

R
∑

m=1

km exp[βm(µmN − E − fm)]

(3.20)

where km is the total number of observations for the run m and fn is given by

exp(fm) =
∑

N,E

P (N,E) (3.21)

The values of fm are found self-consistently by iterating equations 3.20 and 3.21. The

coexistence densities are determined by taking the weighted average under each peak of the

distribution. The pressure in the grand canonical ensemble is given by,

βP =
ln[Ξ(µ, V, T ) + C]

V
(3.22)

where C is an additive constant. C is determined by computing the partition function Ξ

at low densities and extrapolating to the limit of ρ approaching zero. The pressure of each

phase is calculated by choosing the equilibrium chemical potential and integrating the area

under each peak of the resultant probability distribution.

Three types of moves are performed in GCMC simulation: particle displacement or
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Figure 3.1: Histograms from the simulation of phase coexistence for sarin. Run conditions
for each histogram are listed in the legend (T is the temperature and µ is the chemical
potential).

rotation, insertion and deletion.

1. Particle displacements: A particle is randomly chosen in the simulation box, then it

is given a random move and displaced to a new position represented by the following

expression:

rnew = rold + (2.0 ξ − 1.0)dispmax (3.23)

rnew and rold are new and old x, y, z coordinates, respectively. The maximum dis-

placement (dispmax) is varied during the course of the simulation to maintain a 50%

probability for the success of an attempted displacement move. ξ is a random number

generated uniformly between [0,1]. Displacement moves are accepted with a proba-

bility

P = min{1, exp(−∆U/kbT )} (3.24)

where ∆U = Unew − Uold and kb is the Boltzmann constant.
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2. Particle rotations: A particle is chosen at random and rotated about its center of

mass in the x, y and z directions. The angular displacement is chosen at random

θ = (2.0ξ − 1.0)rmrot (3.25)

where “rmrot” is the maximum angular displacement about the x, y, or z axis. Rota-

tions are accepted with a probability:

P = min{1, exp(−∆U/kbT )} (3.26)

where ∆U is the same as defined above.

3. Particle insertion: Particles are inserted in the simulation box by choosing a position

and orientation at random. The acceptance probability for particle creations is

P = min{1, V exp(µ/kbT )

Λ3(N + 1)
exp(−∆U/kbT )} (3.27)

where V is the volume of the simulation box and N is the total number of particles.

The de Broglie wavelength is given by Λ =

√

2πh

kbTm
, while µ is the chemical potential.

4. Particle deletion: Particles are removed from the simulation box by choosing one at

random and removing it from the system. The probability of accepting this move is

P = min{1, Λ3N

V exp(µ/kbT )
exp(−∆U/kbT )} (3.28)
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3.2.4 NPT Molecular Dynamics

Unlike MC simulation, molecular dynamics technique computes the time dependant

behavior of a system. The principle behind any MD simulation is integration of Newton’s

equations of motion. A system is initialized by assigning atoms with random positions and

velocities followed by computation of forces between the atoms. With the knowledge of the

force and the initial positions and velocities, the equation of motion can be numerically

integrated to calculate a trajectory which describes the positions, velocities and accelera-

tions of the atoms with respect to time. From this trajectory, time average of any property

A can be calculated by,

< A >=
1

M

M
∑

i=1

Ai (3.29)

where M is the number of configurations in the molecular dynamics trajectory generated

through time and Ai is the value of the property of interest at each configuration. The

force between the particles is calculated by

fx(r) = −x
r

(

∂u(r)

∂x

)

(3.30)

where fx(r) is the x-component of force and u(r) is the potential energy. The most common

Verlet integration algorithm calculates new positions at time t using positions from time t

and t− dt by,

r(t+ δt) = 2r(t) − r(t− δt) + a(t)δt2 (3.31)
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where a(t) are the accelerations and r(t− δt) are the positions from the previous step. The

velocities used to compute kinetic energy are obtained from

v(t) =
r(t+ δt) − r(t− δt)

2δt
(3.32)

In the isothermal isobaric ensemble (NPT), number of particles, pressure and temperature

of the system are constant. Usually, a thermostat and a barostat are used to accom-

plish temperature and pressure control repectively in a molecular dynamics simulation.

The NPT molecular dynamics simulations were carried out using the simulation software

NAMD [118]. In NAMD, the equations of motion for the NPT ensemble are generated by

modified Nosé Hoover method [119]. The temperature control is established using Langevin

dynamics [120]. An additional degree of freedom in the form of piston with an arbitrary mass

W was introduced that corresponds to the volume of the simulation box and self adjusts

to maintain equality between the internal and the applied pressure. In the Langevin piston

method, partial damping of piston is allowed and controlled through a Langevin equation

presented below. The equations of motion for this Nosé Hoover and Langevin dynamics

algorithm are,

ṙi =
pi
mi

+
pǫ
W
ri (3.33)

ṗi = fi − (1 +
3

Nf
)
pǫ
W
pi (3.34)

V̇ =
3V pǫ
W

(3.35)

V̈ =
1

W
[P (t) − Pext] − γV̇ +R(t) (3.36)

where ri, pi are the position and the momentum of the ith particle, V is the volume of the
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simulation box, pǫ is the barostat momentum, W is the piston mass, Nf is the number of

degrees of freedom, P (t) is the instantaneous pressure, Pext is the applied pressure, γ is the

collision frequency of the piston and R(t) is a random force having a gaussian distribution

with zero mean and variance given by,

< R(0)R(t) >=
2γkbTδ(t)

W
(3.37)

where kb is the Boltzmann’s constant.

3.2.5 Adsorption

Adsorption is carried out with two simulation methods: Grand Canonical Monte Carlo

Simulation (GCMC) and Gibbs Ensemble Monte Carlo Simulation (GEMC). GCMC sim-

ulation is used for obtaining pure component adsorption isotherms while GEMC is used

for mixture adsorption isotherms. In GCMC simulation, the temperature, volume and

chemical potential of the pore is fixed. At equilibrium, the temperature and the chemical

potential of the fluid in the pore and the bulk phase are equal. A separate bulk simulation

is used to calculate the pressure with the same temperature and chemical potential as the

pore simulation. The pressure is computed via virial theorem using a pairwise sum given

by,

P = ρkbT +
1

3V

∑

i

∑

j>1

rij.fij (3.38)

where ρ is the density and V is the volume of the simulation box, i, j are interaction sites,

rij is the separation and fij is the force on atom i due to atom j.
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The probability density of having N molecules in the pore is

P (N,T ) =
exp(Nβµ)

Ξ(µ, V, T )
Q(N,V, T ) (3.39)

where β = 1/kβT , µ is the chemical potential, Q(N,V, T ) and Ξ(µ, V, T ) are the canonical

and grand canonical partition functions of the system respectively. The partition functions

are given by,

Q(N,V, T ) =
1

N !λ3N

∫

exp[−βΦ(rN )]drN (3.40)

where λ is the thermal wavelength of the molecules, Φ(rN ) is the potential energy of the

system and rN represents the position of all N molecules.

Ξ(µ, V, T ) =
∑

N

exp(µN/kβT )Q(N,V, T ) (3.41)

The probability of a trial move being accepted in a GCMC simulation were already discussed

in the GCHRMC section.

In the GEMC method [121, 122], constant pressure simulations are used to conduct

adsorption. In a typical constant pressure GEMC simulation, there are two simulation

boxes, one representing the pore and the other representing the coexisting bulk fluid. The

conditions of equilibrium for the fluid inside the pore and the bulk phase is

T1 = T2 (3.42)

µ1 = µ2 (3.43)

where subscripts 1 and 2 represent the pore and bulk phases respectively. The condition
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for mechanical equilibrium is automatically satisfied by the equality in chemical potential

unlike the fluid phase equilibria. The number of particles N , the temperature of the system

T , volume of the pore Vp and the pressure of the bulk fluid are fixed. Although the number

of particles in the pore Np and the bulk Nb are allowed to vary, the total number N is

constant. Three types of moves are used in an adsorption simulation: particle displacement,

volume change of bulk fluid and transfer move. A schematic of moves applied in the Gibbs

ensemble simulation of adsorption are shown in Figure 3.2. Acceptance citeria for the

displacement move is discussed in the GCMC simulation. Rest of the moves are accepted

with a probability of

1. Volume Change:

P (Vbo → Vbn) = min{1, exp(−β[∆Ub + P (Vbn − Vbo) −NbkT ln(Vbn/Vbo)])} (3.44)

where ∆Ub is the change in the configurational energy of the bulk, P is the pressure,

Vbo and Vbn are the volume of the bulk before and after the move.

2. Bulk to pore transfer:

P (Np → Np + 1) = min{1, exp(−β[∆Up + ∆Ub])
NbVp

(Np + 1)Vb
} (3.45)

where ∆Up is the change in the configurational energy of the pore, ∆Ub is the change

in the configurational energy of the bulk, Nb is the number of particles in the bulk,

Np is the number of particles in the pore, Vp is the volume of the pore and Vb is the

volume of the bulk.
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Figure 3.2: Types of moves attempted in the pore (left) and the bulk (right) of a GEMC
adsorption simulation. Displacement move (top); Pore to bulk and bulk to pore transfer
move (middle); Volume move of the bulk (bottom)

3. Pore to bulk transfer:

P (Np → Np − 1) = min{1, exp(−β[∆Up + ∆Ub])
NpVb

(Nb + 1)Vp
} (3.46)
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3.2.6 Coupled-Decoupled Configurational-Bias Monte Carlo

Coupled-decoupled CBMC technique [113] was developed as one of the trial moves

for MC simulation to insert branched chain molecules that have strong intramolecular

interactions into a dense phase. The basic concept behind the CBMC move is that the

molecules are grown atom by atom into low energy positions using Rosenbluth sampling in

a dense fluid to avoid poor acceptance rate for molecule insertion. The growing mechanism

introduces a bias which is removed in the acceptance rule. This considerably increases the

acceptance rate for insertion of long chain molecules.

In the coupled-decoupled method, the flexible bond angles are decoupled from the tor-

sions and the latter is coupled to the non-bonded terms. First, in the coupled section, the

bond angles are generated with a bias solely based on the bond angle energies and phase

space terms. Once the bond angle distribution is chosen, it is used as an input to the sub-

sequent decoupled section where the torsion and the non-bonded energies are computed.

This process has the advantage that a large number of trial sites can be sampled for the

less expensive bond-angle selection and the expensive non-bonded term is computed only

for a few trial sites. In the decoupled biased growth, the probability of generating a given

configuration is given by,

P =

nstep
∏

n=1

[

exp(−βunb(i))
Wnb(n)

] [

exp(−βut(j))
Wt(n)

] [

exp(−βub(j))
Wb(n)

]

(3.47)

where n is the growth step, nstep is the total number of growth steps, β = 1/kbT , unb, ut

and ub are the non-bonded, torsional and bond angle energies respectively and i, j and k
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are the trial numbers. The Rosenbluth weights are given by,

Wnb(n) =

nnb
∑

i=1

exp(−βunb(i)) (3.48)

Wt(n) =

nt
∑

j=1

exp(−βut(j)) (3.49)

Wb(n) =

nb
∑

k=1

exp(−βub(k)) (3.50)

where nnb, nt and nb are the number of trial sites for the non-bonded, torsional and bond

bending interactions respectively. The growth move is accepted with a probability

Pacc = min

[

1,

∏nstep
n=1 Wnb(n)nWt(n)nWb(n)n

∏nstep
n=1 Wnb(n)oWt(n)oWb(n)o

]

(3.51)

In the coupled biased growth, the probability of generating a given configuration is given

by,

P =

nstep
∏

n=1

[

exp(−βunb(i))Wt(i)

Wnb(n)

] [

exp(−βut(j))Wb(j)

Wt(n)

] [

exp(−βub(j))
Wb(n)

]

(3.52)

where the Rosenbluth weights are given by,

Wnb(n) =

nnb
∑

i=1

exp(−βunb(i))Wt(i) (3.53)

Wt(i) =

nt
∑

j=1

exp(−βut(j))Wb(j) (3.54)

Wb(j) =

nb
∑

k=1

exp(−βub(k)) (3.55)
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The growth move is accepted with a probability

Pacc = min

[

1,

∏nstep
n=1 Wnb(n)n

∏nstep
n=1 Wnb(n)o

]

(3.56)

A combination of the decoupled and coupled biased growth constitutes the couple-decoupled

CBMC which is a very effective way of simulating flexible molecules.

3.3 Computation of Interactions

In addition to the general simulation techniques, it is also important to know how the

interactions, i.e., the potential energies are treated and computed in a typical simulation.

In this regard, details about potential truncation and ewald summation for electrostatics

are presented.

3.3.1 Potential Truncation

Since the Lennard-Jones Potential has an infinite range, it is necessary to truncate

the potential to make it finite. Two types of methods are used to truncate potentials:

simple truncation, truncation and shift. Simple truncations ignore the interactions beyond

a certain distance called the spherical cut-off radius. The potential for this type is,

u(r) =















ulj(r) if r ≤ rc

u(r) = 0 if r > rc

where ulj is the Lennard Jones potential. In the second method, the potential looks like,

u(r) =















ulj(r) − ulj(rc) if r ≤ rc

u(r) = 0 if r > rc

The penalty of applying potential truncations can be eliminated by implementing long
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range corrections to account for the long range nature of the potential. The long range part

of the potential is calculated by,

utail =
8

3
πρεσ3

[

(

σ

rc

)9

−
(

σ

rc

)3
]

(3.57)

where ρ is the average number density and rc is the cut-off radius. For all the Monte

Carlo simulations with the CWA, a truncated potential with long range corrections was

used. For the Monte Carlo and molecular dynamics simulations of the energetic materials,

a truncated and shifted potential was used.

3.4 Ewald Summation

Coulombic interaction between molecules is a long range potential given by,

Ucoulomb =
1

2

N
∑

i=1

N
∑

i=1

qiqj
rij

(3.58)

where N is the number of particles, qi, qj are partial charges on particles i and j respec-

tively and rij is the separation between them. This potential is computationally expensive

to calculate and a spherical truncation would result in inaccurate results. Ewald sum-

mation [123] is the most accurate way of computing long range electrostatic interactions

between molecules themselves and their periodic images in a simulation. In this method,

the coulombic interaction potential is separated into three terms given by,

Ucoulomb = Ureal + Uimag + Ucorr (3.59)
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where Ureal is the short range real space sum, Uimag is the long range imaginary sum and

Ucorr is the correction term. The short range and the long range part sum quickly in the

real space and the Fourier space respectively. In Ewald summation, for real space sum, each

point charge qi is assumed to be surrounded by a Gaussian charge cloud of equal magnitude

and opposite sign with a charge density,

ρi(r) = qiα
3exp(−α2r2)/

√
π3 (3.60)

where r is the position relative to the center of the charge distribution, α is a parameter

that determines the width of the gaussian distribution. The inclusion of the charge cloud

limits the real space sum to short range by screening the interaction between neighboring

point-charges. For the Fourier sum, a similar second charge cloud with same charge and

sign as the original cloud is added for each point charge and the resulting Poisson’s equation

is solved using Fourier transform. The resultant equation for real space and Fourier space

sums are,

Ureal =
1

2

N
∑

i,j

qiqj erfc(αrij)

rij
(3.61)

where erfc(x) = 1 − erf(x) and is a rapidly decaying function and

Uimag =
1

2πV

N
∑

i,j

∑

k 6=0

exp(−(πk/α)2 + 2πik.(ri − rj))

k2
(3.62)

where V is the volume of the simulation box, k is the Fourier transform variable, ri and

rj are the positions of particles i and j. A schematic of Ewald summation is shown in

Figure 3.3. The effect of inclusion of additional charge clouds are nullified by adding the
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Figure 3.3: Schematic [124] of ewald summation

correction term in Eq. 3.59 which is given by,

Ucorr =
−α√
π

N
∑

i=1

q2i (3.63)

In all the Monte Carlo simulations runs, Ewald summation was used to compute long

range electrostatic potential. Despite its efficiency, Ewald summation scales as O(N2)

which makes it inapplicable to larger systems. An alternative to the Ewald summation

algorithm is the Particle Mesh Ewald (PME) method [125] which scales as O(N). All

the Molecular Dynamics simulation in this work used PME method to compute Coulombic

potential. In this technique, the Fourier sum is approximated by multidimensional piecewise

interpolation. The basic steps that constitute the PME algoritm are

1. A finely-spaced mesh is added to the simulation box

2. Charges are assigned to the mesh points to approximate the charge density.

3. The electrostatic potential due to the charge distribution on the mesh which is rep-

resented as Poisson’s equation is computed using fast Fourier transform technique.
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4. The field at each mesh point is calculated by differentiating the potential and the

force on each particle is calculated by interpolation from the mesh field.
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Chapter 4

Conformational Behavior of

Energetic Materials

4.1 Introduction

The explosives derive most of their characteristics from the nitro and the amino func-

tional groups. So, it is necessary to determine accurate rotational barriers for the devel-

opment of atomistic force fields for use in molecular dynamics simulations. The prediction

of rotational barriers of the nitro and the amino group also offers valuable insight into the

intramolecular interactions such as resonance, steric effects and hydrogen bonding. With

ab initio calculations of energetic materials, it is also possible to correlate impact sensitiv-

ity which is a characteristic of energetic materials to a few molecular properties such as

structure and partial charges.

To date, very few computational or experimental studies on the internal rotation around

the C-N bond and the C-O bond in the energetic materials of interest have been published.

Experimental work on the internal rotation around the C-NH bond in MNA (N-methyl-p-

nitroaniline) has been published [126]. Manaa et.al [147] reported ab initio calculations for

nitro and amino group rotational barriers for another IM (Insensitive Munition) compound,

1,3,5-triamino-2,4,6-trinitrobenzene (TATB), to determine the conjugate effect between the

amine and nitro groups and the phenyl ring. Theoretical studies have been reported for

rotation of the functional groups of interest as part of other molecules, such as the -OCH3

group in anisole [127], -NO2 group in nitrobenzene [128], -HNCH3 group in triazine [129] and

para-substituted anisoles [130]. Similar experimental NMR, resonance fluorescence, infrared
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and microwave spectroscopy studies were also reported for determination of structures and

gas phase rotational barriers in substituted benzenes [131–141]. NMR spectra was applied to

a variety of ortho substituted anisoles to measure the chemical shifts and proton deshielding,

providing information about resonance interactions [142–145]. X-ray scattering performed

on single crystal 2-methoxy-3,5-dinitropyridine, which has a structure similar to DNAN

(one ring carbon replaced by nitrogen), was used to identify various resonance, conjugation

and steric effects [146]. In this chapter, rotational barriers are predicted for DNAN, MNA,

DNP and NTO around the C-N and C-O bond (DNAN) and a sensitivity analysis of the

energetic materials is presented.

4.2 Sensitivity Analysis

The primary property that makes IM compounds desirable are their reduced sensitivity

to shock or impact. In an effort to understand the factors that affect sensitivity, sensitivity

correlations that aid in relating molecular structures or electrostatic potential to sensitivity

have been proposed [148–152]. In case of nitroaromatics, the C-NO2 bond is the trigger

linkage and scission of these bonds acts as the initial step in the thermal decomposition

of energetic materials [153–158]. As a result, the sensitivity depends on the strength and

stability of the C-NO2 bond. So there has been considerable focus on relating sensitivity

with the properties of the C-NO2 bond. One quantity that directly influences the C-NO2

bond is the electrostatic potential at the midpoint of the C-NO2 bond, Vmid [149], which

is given by,

Vmid =
QC
0.5R

+
QN
0.5R

(4.1)

where QC and QN are the the charges on carbon and nitrogen atoms respectively and R

is the longest bond length corresponding to the C-NO2 bond. Higher the value of Vmid,
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Table 4.1: Sensitivity parameters for the energetic materials

Molecule QC QN R Vmid
DNAN -0.13 0.82 1.46 0.95
MNA -0.08 0.76 1.45 0.94
DNP 0.38 0.75 1.44 1.56
NTO 0.43 0.77 1.44 1.67
MTNI -0.21 0.91 1.45 0.97
TATB -0.75 1.09 1.43 0.47

higher is the impact sensitivity of the molecule. The presence of strong resonance donors

such as NH2, OH, OCH3 in a molecule strengthen the C-NO2 by donating electrons thereby

decreasing the positive charges of the carbon and nitrogen atoms and decreasing Vmid. The

parameters QC , QN , R and Vmid predicted at the HF/6-31G+(d,p) level of theory and

basis set are listed in Table 4.1. The charges listed in the Table are from the CHELPG

scheme in Gaussian [109]. As seen from the table, TATB is the most insensitive of all with

the lowest Vmid which agrees with the experimental finding [159]. The presence of amine

groups and extensive intramolecular hydrogen bonding in TATB [147] have increased the

NO2 rotational barrier. So accidental detonation is least possible in TATB since one of

the first events to occur in TATB initiation is C-NO2 homolysis [153]. Unless there is any

proper initiation, the energetic materials of interest will not detonate automatically. The

sensitivity correlation explained here is generally limited to nitroaromatics. Few concerns

with any sensitivity correlation method are that the initiation of detonation depends on a

complex interplay of various molecular, crystal and physical factors. As a result, Vmid may

not be the only property that governs the detonation of the energetic materials. However,

these relationships may be used as a preliminary method of testing a compound’s sensitivity.
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4.3 DNAN & MNA

4.3.1 Computational Methodology

The optimization of the structures and the dihedral scans were performed with Gaussian

03 using Hatree-Fock(HF), Møller Plesset(MP2) and density functional theory (B3LYP)

with the 6-31G+(d,p) basis set. Optimizations were started from a number of initial con-

formations to confirm the predicted structures were true minimum energy conformers. Bar-

riers to rotation for the various substituent groups were determined from relaxed potential

energy scans, where the dihedral angle of interest was fixed and the remaining degrees of

freedom were optimized.

Figure 4.1: Molecular structure of DNAN (left) and MNA (right)

Each scan involved a sweep of dihedral angles from -180◦ to 180◦ in 20◦ increments.

The conformational behavior of DNAN and MNA are analyzed with Hartree-Fock (HF),

Moller Plesset (MP2) and density functional theory using the hybrid B3LYP functional to

check for other stable conformers. A schematic of DNAN and MNA structures are shown

in Figure 4.1.
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4.3.2 Equilibrium Structure

For DNAN, HF, MP2 and B3LYP calculations predicted a co-planar structure with

the methoxy and the p-nitro groups in plane with the aromatic ring, while the ortho-

nitro group was tilted out of plane. The methoxy group was observed lying anti to the

o-nitro group, avoiding steric overlap. Equilibrium parameters for DNAN optimized at HF,

MP2 and B3LYP theories are presented in Table 4.2 with the experimental values [160] for

comparison. The bond lengths and angles predicted from Gaussian are in good agreement

with the experiment. In general, the nitro group always stays in plane with the aromatic

ring but in DNAN, it is forced out of the plane and distorted by the methoxy group in all

levels of theories due to steric and packing effects. NMR studies on substituted anisoles [142]

reveal the presence of steric hindrance between the methoxy and the ortho nitro group.

Tilting of the C-O bond is observed for all three levels of theories. The repulsion between

the methyl group and the hydrogen attached to C6 governs the tilting of the C-O bond. The

C-C-C angles vary from 118 to 122◦ due to the internal rearrangements that the molecule

undergoes to relieve steric compression from the substituent groups. The length of the C-O

bond predicted by ab initio, DFT calculations and experimental data (1.33-1.35 Å) was less

than the C-O bond length in anisole (1.37 Å) [161]. The shortening of the C-O bond length

indicates the presence of some double bond character due to the resonance of the methoxy

group with the p-nitro group. The electron release by the oxygen atom to the aromatic ring

results in an increase in electron density at the para position. This phenomena was observed

experimentally and explained by Buchanan et al. [142]. A schematic of the resonance effect

found in DNAN is shown in Figure 4.2. Weak intramolecular hydrogen bonding, where the

oxygen from the p-nitro group interacts with the adjacent hydrogen atoms, was predicted
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Table 4.2: Molecular parameters for DNAN

Parameter HF B3LYP MP2 Exp (A) [160]

Bond Lengths ( Å )
C1-C2 1.403 1.417 1.406 1.402
C2-C3 1.375 1.386 1.384 1.361
C3-C4 1.382 1.391 1.393 1.388
C4-C5 1.383 1.394 1.390 1.369
C5-C6 1.381 1.389 1.396 1.372
C6-C1 1.397 1.408 1.402 1.377
C1-O1 1.318 1.339 1.354 1.333
O1-C7 1.412 1.431 1.434 1.436
C2-N1 1.459 1.472 1.462 1.475
N1-O2 1.189 1.227 1.243 1.188
N1-O3 1.196 1.232 1.245 1.190
C4-N2 1.452 1.466 1.469 1.468
N2-O4 1.194 1.231 1.244 1.211
N2-O5 1.195 1.232 1.243 1.212

Angle(Degree)
C1-C2-C3 122.0 121.7 122.9 123.8
C2-C3-C4 118.6 118.7 117.3 116.7
C3-C4-C5 121.1 121.2 122.0 121.9
C4-C5-C6 119.8 119.5 119.2 119.6
C5-C6-C1 120.7 120.8 120.6 121.3
C6-C1-C2 117.7 117.7 117.7 116.8
O1-C1-C2 118.2 118.0 116.5 118.9
O1-C1-C6 124.0 124.1 125.7 124.3
C7-O1-C1 121.3 119.7 117.2 118.5
N1-C2-C1 121.2 121.2 118.9 120.2
N1-C2-C3 116.8 116.9 118.1 116.0
O2-N1-C2 118.0 117.9 116.9 119.0
O3-N1-C2 116.6 116.7 116.8 117.2
O2-N1-O3 125.4 125.2 126.2 123.8
N2-C4-C3 119.2 119.1 118.6 118.4
N2-C4-C5 119.6 119.5 119.2 119.7
O4-N2-C4 117.6 117.7 117.4 119.0
O5-N2-C4 117.4 117.5 117.4 117.2
O4-N2-O5 125.0 124.7 125.1 123.8

by all theory levels.

For MNA, both ab initio and DFT methods predicted a planar structure. The equilib-

rium parameters, listed in Table 4.3, agree well with the experimental solid structure [162].
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Figure 4.3: Resonance structures for MNA

Although experimental [163–165] and theoretical [166] studies predict a pyramidal nitrogen

for aniline, the substitution of a methyl group in place of a hydrogen in the amine group,

and conjugate effects among the strong electron-donor amine group and the phenyl ring

caused a decrease in pyramidalisation [167, 168]. As observed from the data in Table 4.3,

HF, B3LYP, and MP2 results agree well with the experimental bond lengths and angles.

The equilibrium C-NH bond length was shorter than the typical equilibrium C-N single

bond of 1.45 Å . The reason for shortening of the C-NH bond is due to the presence of some

double bond characteristics, which are caused by conjugate effects between the ring and the

amino and nitro groups. Although C-NO2 has a bond length of 1.43 Å , which is close to

the length of a single bond, it exhibits some double bond character due to the NH-electron

donor and the NO2 acceptor interaction, as shown in Figure 4.3. Similar to DNAN, weak

intramolecular hydogen bonding is observed in MNA.
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Table 4.3: Molecular parameters for MNA

Parameter HF B3LYP MP2 Experiment [162]

Bond Lengths( Å )
C1-C2 1.408 1.418 1.412 1.387
C2-C3 1.371 1.382 1.387 1.368
C3-C4 1.391 1.401 1.397 1.396
C4-C5 1.383 1.396 1.392 1.372
C5-C6 1.380 1.388 1.393 1.373
C6-C1 1.403 1.415 1.410 1.417
C1-N1 1.359 1.368 1.373 1.358
N1-H5 0.991 1.007 1.006 0.890
N1-C7 1.441 1.449 1.446 1.439
C4-N2 1.444 1.452 1.460 1.434
N2-O1 1.197 1.237 1.246 1.226
N2-O2 1.197 1.237 1.246 1.243

Angle(Degree)
C1-C2-C3 120.86 120.95 121.22 122.0
C2-C3-C4 119.59 119.51 118.92 118.7
C3-C4-C5 120.64 120.70 121.40 120.9
C4-C5-C6 119.99 119.87 119.31 120.5
C5-C6-C1 120.39 120.49 120.73 119.8
C6-C1-C2 118.50 118.44 118.38 118.3
N1-C1-C2 119.59 119.79 120.06 120.4
N1-C1-C6 121.89 121.75 121.54 121.3
H5-N1-C1 117.36 117.35 117.82 112.0
C7-N1-C1 124.79 124.71 123.62 124.8
H5-N1-C7 117.84 117.93 118.54 123.0
N2-C4-C3 119.64 119.60 119.25 118.3
N2-C4-C5 119.70 119.68 119.33 120.8
O1-N2-C4 117.88 118.04 117.79 120.0
O2-N2-C4 117.98 118.14 117.90 118.0
O1-N2-O2 124.13 123.81 124.30 122.0

4.3.3 Torsional Barriers

Torsional barriers for the methoxy, ortho- and para- nitro groups in DNAN are shown

in Figures 4.4, 4.5 and 4.6, respectively. The predicted barriers to rotation in DNAN and

MNA are presented in Table 4.4. For rotational barrier, B3LYP and HF predict peaks about

2-3 kcal/mol higher than the corresponding results from MP2 calculations. This is due to
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Figure 4.4: Torsional barrier for methoxy group (C-O-C-C dihedral) in DNAN. Predic-
tion of HF/6-31G+(d,p)(green), B3LYP/6-31G+(d,p) calculations(black), and MP2/6-
31G+(d,p)(red).

the electron correlation effects, which are significant in these molecules. Although the mag-

nitude of the NO2 barriers were different for MP2, HF and B3LYP theories, the location of

maxima and minima were similar. The barrier to rotation of the para-nitro group predicted

by MP2 theory is 4.2 kcal/mol, which is in good agreement with experimental results of

4.07 kcal/mol [169] and 4.54 kcal/mol [170] and prior ab initio calculations performed on

nitrobenzene [128]. DFT and HF predicted a barrier of about 7 kcal/mol which is about

60% larger than experiment. For the ortho-nitro group rotation, all theories predict a bar-

rier to rotation ranging from 1-1.75 kcal/mol, which is almost 50% lower than the p-nitro

group barriers. Such low barriers, which occur at a nearly orthogonal conformation (100◦)

of the o-nitro group are due to the fact that there are no neighboring groups to cause steric

hinderance or intramolecular hydrogen bonding interactions. For rotation of the methoxy

group, the O2-N1-C2-C1 dihedral and the H-C7-O1-C1 dihedral where H is the nearest

hydrogen to the ortho hydrogen at C6 are fixed to avoid steric crowding effects between the

methoxy and bulky ortho substituent(nitro) group. B3LYP and HF calculations predicted

a barrier of 7.2 and 7.5 kcal/mol respectively.



www.manaraa.com

48

-200 -100 0 100 200
Dihedral Angle (Degree)

0

0.5

1

1.5

2

U
to

rs
io

n (
kc

al
/m

ol
)

Figure 4.5: Torsional barrier for o-nitro group (O-N-C-C dihedral) in DNAN. Predic-
tion of HF/6-31G+(d,p)(green), B3LYP/6-31G+(d,p) calculations(black), and MP2/6-
31G+(d,p)(red).
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Figure 4.6: Torsional barrier for p-nitro group (O-N-C-C dihedral) in DNAN. Predic-
tion of HF/6-31G+(d,p)(green), B3LYP/6-31G+(d,p) calculations(black), and MP2/6-
31G+(d,p)(red).

Table 4.4: Rotational barriers in kcal/mol for DNAN and MNA at 6-31G+(d,p) basis set.

Functional Group HF B3LYP MP2

DNAN
Methoxy 7.5 7.2 -
O-Nitro 1.2 1.0 1.7
P-Nitro 7.2 7.0 4.2

MNA
Methylamine 6.9 9.9 6.1

P-Nitro 8.8 8.6 4.6
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Table 4.5: Optimized Molecular parameters for methoxy rotation in DNAN

Parameter HF B3LYP MP2

0 40 80 0 40 80 0 40 80

C1-C2 1.40 1.39 1.39 1.41 1.41 1.40 1.40 1.40 1.40

C1-O1 1.31 1.32 1.33 1.33 1.34 1.35 1.35 1.36 1.36

O1-C7 1.41 1.41 1.41 1.43 1.43 1.43 1.43 1.44 1.44

C2-N1 1.45 1.45 1.46 1.47 1.47 1.47 1.46 1.46 1.46

N1-O2 1.18 1.18 1.18 1.22 1.22 1.22 1.24 1.24 1.24

C4-N2 1.45 1.45 1.45 1.46 1.46 1.47 1.46 1.47 1.47

N2-O4 1.19 1.19 1.19 1.23 1.23 1.23 1.24 1.24 1.24

C6-C1-C2 117.69 117.84 118.17 117.75 117.81 118.11 177.71 117.82 117.99

C2-C1-O1 118.22 119.42 121.98 118.08 119.25 121.71 116.54 117.50 120.11

C1-C2-N1 121.19 121.22 121.62 121.28 121.25 121.37 118.87 118.70 119.05

C3-C4-N2 119.23 119.11 118.90 119.18 119.05 118.82 118.67 118.55 118.36

O4-N2-O5 124.97 125.04 125.11 124.75 124.81 124.93 125.13 125.18 125.30

C5-C6-C1-C2 0.08 0.82 -0.25 -0.04 1.13 -0.10 -0.04 -3.14 -0.25

The optimized geometries resulting from the internal rotation around the C-O bond at

dihedral angles 0◦, 40◦ and 80◦ are presented in Table 4.5 and C-N bond in Table 4.6 and

4.7. Some significant observations can be made from these parameters. Tilting of the C-O

bond is observed for both the methoxy and the o-nitro group rotation, which is evident

from the C2-C1-O1 angle. Also, the double bond character of the C-O bond decreases

when the methoxy group rotates out of plane. When the ortho nitro group rotates, there is

enough repulsion between the oxygens of the nitro group and the methoxy oxygen to force

a change of about 3-4◦ in the C2-C1-O1 and C2-C1-N1 angle. This finding further confirms

the presence of steric effects between the methoxy and the ortho nitro group. Overall, the

interaction between the methoxy and the nitro group at the ortho position governs their

internal rotation. While the rotational barriers of o-nitro group are affected strongly by

the neighboring presence of the methoxy group, the rotation of the p-nitro group has little

effect on the methoxy and o-nitro rotational barriers.

Barriers to dihedral rotation for the amino and the nitro groups in MNA are presented

in Figure 4.7 and 4.8, respectively. The methyl-amino group torsion evaluated at B3LYP
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Table 4.6: Optimized Molecular parameters for o-nitro rotation in DNAN

Parameter HF B3LYP MP2

0 40 80 0 40 80 0 40 80

C1-C2 1.41 1.40 1.39 1.42 1.41 1.40 1.41 1.40 1.40

C1-O1 1.31 1.31 1.32 1.33 1.33 1.34 1.35 1.35 1.35

O1-C7 1.41 1.41 1.41 1.43 1.43 1.43 1.43 1.43 1.43

C2-N1 1.46 1.45 1.46 1.47 1.47 1.47 1.47 1.46 1.46

N1-O2 1.18 1.18 1.18 1.23 1.23 1.22 1.24 1.24 1.24

C4-N2 1.45 1.45 1.45 1.46 1.46 1.46 1.46 1.46 1.46

N2-O4 1.19 1.19 1.19 1.23 1.23 1.23 1.24 1.24 1.24

C1-C2-C3 120.95 121.93 122.74 120.85 121.76 122.56 121.44 122.45 123.01

C2-C1-O1 119.83 118.21 116.25 119.60 118.00 116.32 119.47 117.57 115.60

C1-C2-N1 122.97 121.32 118.47 122.97 121.20 118.49 122.62 120.66 117.73

C2-N1-O2 119.00 118.07 116.96 116.86 116.75 116.97 118.36 117.50 116.55

O2-N1-O3 124.38 125.32 126.13 124.37 125.30 126.08 124.78 125.89 126.64

C3-C4-N2 119.38 119.28 119.01 119.28 119.16 118.90 118.85 118.82 118.61

O4-N2-O5 124.95 124.95 124.94 124.77 124.75 124.69 125.15 125.14 125.09

C5-C6-C1-C2 0.01 -0.06 -0.23 0.06 0.13 -0.13 -0.01 1.24 -0.57

C2-C1-O1-C7 179.9 179.7 -179.4 -179.9 178.7 -179.8 -179.9 177.0 -179.7

C3-C4-N2-O4 0.01 0.53 0.12 0.03 0.57 0.48 0.05 0.77 1.19

Table 4.7: Optimized Molecular parameters for p-nitro rotation in DNAN

Parameter HF B3LYP MP2

0 40 80 0 40 80 0 40 80

C3-C4 1.37 1.37 1.37 1.39 1.39 1.38 1.39 1.39 1.39

C1-O1 1.33 1.33 1.33 1.33 1.34 1.34 1.35 1.35 1.35

O1-C7 1.42 1.42 1.42 1.43 1.43 1.42 1.43 1.43 1.43

C2-N1 1.45 1.45 1.45 1.47 1.47 1.47 1.46 1.46 1.46

N1-O2 1.19 1.19 1.19 1.22 1.22 1.22 1.24 1.24 1.24

C4-N2 1.45 1.45 1.46 1.46 1.46 1.47 1.46 1.46 1.46

N2-O4 1.19 1.19 1.19 1.23 1.23 1.22 1.24 1.24 1.24

C3-C4-C5 122.02 122.29 122.33 121.74 122.05 122.27 121.29 121.45 121.71

C2-C1-O1 116.56 116.44 116.51 121.41 121.47 121.72 118.05 118.08 118.33

C1-C2-N1 118.87 118.92 119.15 120.96 121.08 121.18 121.24 121.36 121.67

C2-N1-O2 116.90 116.91 117.00 117.72 117.77 117.83 117.91 117.97 118.13

O2-N1-O3 126.24 126.24 126.18 125.36 125.34 125.34 125.28 125.23 125.09

C3-C4-N2 118.67 118.68 118.53 118.91 118.67 118.95 119.16 119.13 118.96

O4-N2-O5 125.09 125.64 125.97 125.10 125.53 125.93 124.75 125.25 125.75

C3-C4-C5-C6 0.41 1.95 1.50 -0.07 -2.79 -1.54 -0.21 1.68 0.86

C2-C1-O1-C7 -178.6 -179.0 -179.0 105.5 105.6 104.4 -178.6 -178.8 -178.3

C1-C2-N1-O2 -61.71 -61.65 -60.11 -40.28 -39.12 -39.11 -39.30 -38.17 -35.33

level of theory is 9.9 kcal/mol, and is in good agreement with the experimental value

of 11.1 kcal/mol [126]. MP2 and HF theories underpredict these rotational barriers by

approximately 50%. The presence of the methyl substituent in the amine group and the
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Figure 4.7: Torsional barrier for methyl-amine group (C-N-C-C dihedral) in MNA. Pre-
diction of HF/6-31G+(d,p)(green), B3LYP/6-31G+(d,p) calculations(black), and MP2/6-
31G+(d,p)(red).

para substituent (π electron acceptor) increases the rotational barrier around the C-N

bond [126,129,171,172]. This explains the lower value for the barriers to rotation in aniline

which is about 3.1 kcal/mol [166]. Internal rotation around the C-NH bond is more difficult

compared to the C-NO2 bond due to the partial double bond character of the C-N bond

resulting in a difference of about 1.3-2 kcal/mol in their rotational barriers. Figure 4.7 shows

discontinuities in the energy profile for all three plots. This behavior was also observed and

explained for methylamine rotation by Birkett et al [129] in their work with substituted

triazine rings. The discontinuous barrier to dihedral rotation is largely due to the ability of

nitrogen in a substituted amine group to be both planar and pyramidal; when the pyramidal

nature changes, there is a significant drop in energy.

As shown in Figure 4.7, MP2 predicts a minimum energy conformer for MNA with

HNCH3 rotated 10-20 degrees out of plane, while B3LYP and HF theories predict a flat

HNCH3, with both H and CH3 groups in-plane with the aromatic ring. To further inves-

tigate this behavior, MP2 calculations were run with a double diffuse function (++) and

larger basis set (6-311G+(d,p)), but both gave similar relative energies. Calculations per-
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Figure 4.8: Torsional barrier for p-nitro group (O-N-C-C dihedral) in MNA. Predic-
tion of HF/6-31G+(d,p)(green), B3LYP/6-31G+(d,p) calculations(black), and MP2/6-
31G+(d,p)(red).

formed with QCISD theory and 3-21G basis set predict a C-N-C-C dihedral equal to 0◦ as

the lowest energy conformer, in agreement with HF and B3LYP calculations. These results

suggest that for molecules that have resonance structures, such as MNA, MP2 theory may

give erroneous results for the lowest energy conformer.

For the nitro group in MNA, predicted barriers for rotation of the NO2 group were 4.6

kcal/mol at MP2 level of theory, 8.6 kcal/mol at DFT and 8.8 kcal/mol at HF, which are

slightly higher than the corresponding values for the para-nitro group in DNAN, inspite of

the absence of adjacent groups. These larger rotational barriers are a manifestation of the

partial double bond of the C-NO2 bond. The optimized geometries for the internal rotation

around the C-N bond at dihedral angles 0◦, 40◦ and 80◦ are presented in Table 4.8 and

4.9. The internal rotation of the amine group significantly affects the C-NH2 bond whereas

the nitro group rotation does not have a pronounced effect on the C-NO2 bond, which is

evident from the C1-N1 and C4-N2 bond values from the Table.

The C-NH2 bond loses its partial double bond character due to the decrease in the

ring-amine group conjugative interaction when the geometry changes from planar to per-
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Table 4.8: Optimized Molecular parameters for methylamine rotation in MNA

Parameter HF B3LYP MP2

0 40 80 0 40 80 0 40 80

C1-C2 1.40 1.40 1.39 1.41 1.41 1.40 1.40 1.40 1.40

C1-N1 1.35 1.38 1.40 1.36 1.38 1.41 1.37 1.39 1.41

C4-N2 1.44 1.44 1.45 1.45 1.45 1.46 1.46 1.46 1.46

N2-O1 1.19 1.19 1.19 1.23 1.23 1.23 1.24 1.24 1.24

N1-C7 1.44 1.45 1.46 1.44 1.46 1.47 1.37 1.39 1.41

N1-H5 0.99 0.99 0.99 1.00 1.01 1.01 1.00 1.01 1.01

C6-C1-C2 118.45 118.43 118.84 118.45 118.41 118.91 118.50 118.61 119.10

C4-N2-O1 118.14 118.04 117.87 117.84 117.80 117.61 117.98 117.87 117.73

C2-C1-N1 121.75 121.38 119.23 121.85 121.04 118.81 121.89 121.35 119.10

C3-C4-N2 119.68 119.56 119.27 119.24 119.24 118.91 119.70 119.56 119.22

O1-N2-O2 123.81 123.95 124.18 124.37 124.44 124.72 124.13 124.28 124.49

C5-C6-C1-C2 0.0 -0.7 -1.34 1.26 -3.27 -2.33 0.0 -0.55 -0.67

C3-C4-N2-O1 0.0 -0.36 -1.03 -9.96 -4.46 -13.14 0.0 -0.32 -0.83

Table 4.9: Optimized Molecular parameters for nitro rotation in MNA

Parameter HF B3LYP MP2

0 40 80 0 40 80 0 40 80

C1-C2 1.40 1.40 1.39 1.41 1.41 1.41 1.40 1.40 1.40

C1-N1 1.36 1.36 1.37 1.36 1.37 1.38 1.38 1.38 1.39

C4-N2 1.44 1.44 1.46 1.45 1.45 1.47 1.46 1.45 1.46

N2-O1 1.19 1.19 1.19 1.23 1.23 1.23 1.24 1.24 1.24

N1-C7 1.44 1.44 1.44 1.45 1.45 1.45 1.45 1.45 1.45

N1-H5 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.01 1.01

C6-C1-C2 118.52 118.56 118.46 118.45 118.46 118.36 118.42 118.62 118.65

C1-N1-H5 116.30 115.65 114.57 117.33 117.03 115.82 113.86 113.65 113.13

C1-N1-C7 123.97 123.35 122.34 124.68 124.38 123.19 120.72 120.50 120.00

C2-C1-N1 121.99 122.05 122.23 121.76 121.75 121.91 121.81 121.80 121.83

C3-C4-N2 119.68 119.26 119.45 119.66 119.54 119.13 119.25 119.16 118.86

O1-N2-O2 124.16 124.61 125.11 123.81 124.33 124.95 124.36 124.94 125.30

C5-C6-C1-C2 0.0 -0.3 0.0 0.0 -1.2 -0.8 -2.8 -0.7 -0.8

pendicular with respect to the methylamine group. Tilting of the C-N bond is also observed

for the amine group, but not for the nitro group. The length of the N1-C7 bond increases

on rotation from 0◦ to 90◦ to avoid steric interference of the methyl hydrogens with the

ortho hydrogens of the benzene ring. Torsional barriers predicted with MP2 theory were

generally lower than B3LYP and HF calculations, except for the o-nitro group where MP2

predicted the highest barrier. MP2 theory, however, was found to perform poorly in the
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determination of the optimized conformation for MNA; a problem we attribute to the limi-

tations of MP2 in dealing with molecules with significant resonance structure. These results

show that electron correlation has a significant effect on the barriers to rotation in molecules

with steric and conjugative interactions. The magnitude of the barriers are useful in under-

standing the strength of the intramolecular interactions and reaction mechanism for the

decomposition of explosives.

4.4 DNP & NTO

4.4.1 Equilibrium Structures

Equilibrium parameters for NTO and DNP are listed in Table 4.10 and Table 4.11

respectively and a schematic of DNP and NTO is shown in Figure 4.9. The optimized

structures of DNP and NTO at HF, B3LYP and MP2 levels of theories are all planar with

respect to the nitro groups. All the structural parameters from the ab initio methods and

the experiment [173] agree well with each other. No experimental structure exists for DNP

to make a comparison.

Figure 4.9: Molecular structure of DNP (left) and NTO (right)

4.4.2 Torsional barriers

The torsional barriers determined for the nitro groups in both the compounds are pre-

sented in Figures 4.10, 4.11 and 4.12. The predicted barriers to rotation around the C-N
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Table 4.10: Molecular parameters for NTO

Parameter B3LYP MP2 HF Exp [173]

Bond Lengths ( Å )
N1-C1 1.365 1.359 1.359 1.348
C1-N3 1.291 1.307 1.254 1.283
N3-N4 1.359 1.361 1.352 1.358
N4-C2 1.397 1.393 1.370 1.367
C2-N1 1.403 1.405 1.381 1.377
C2-O3 1.205 1.211 1.185 1.220
C1-N2 1.452 1.448 1.448 1.454
N2-O1 1.215 1.226 1.175 1.217
N2-O2 1.230 1.236 1.190 1.217

Angle(Degree)
O1-N2-O2 126.8 127.1 127.2 126.5
O1-N2-C1 118.4 118.0 118.1 116.5
C1-N3-N4 103.4 102.3 103.8 102.7
N3-N4-C2 114.5 115.3 113.7 112.8
N4-C2-O3 129.5 129.9 129.3 128.8
N4-C2-N1 100.7 100.4 101.6 103.7
C2-N1-C1 107.7 108.0 106.8 105.5

bond in DNP and NTO are presented in Table 4.12.
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Figure 4.10: Torsional barrier for rotation around N4-C3 bond in DNP. Predic-

tion of B3LYP/6-31G+(d,p) calculations(black), MP2/6-31G+(d,p)(green) and HF/6-

31G+(d,p)(red).
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Table 4.11: Molecular parameters for DNP

Parameter B3LYP MP2 HF

Bond Lengths( Å )
C1-C2 1.376 1.388 1.355
C2-N2 1.360 1.353 1.343
N2-N3 1.326 1.340 1.303
N3-C3 1.329 1.343 1.297
C3-C1 1.405 1.402 1.405
C2-N1 1.442 1.444 1.435
N1-O1 1.219 1.229 1.180
N1-O2 1.229 1.234 1.190
C3-N4 1.462 1.458 1.449
N4-O3 1.226 1.233 1.189
N4-O4 1.216 1.227 1.179

Angle(Degree)
C1-C2-N2 108.2 108.8 120.86
C2-N2-N3 112.2 111.5 119.59
N2-N3-C3 104.0 105.0 120.64
N3-C3-C1 113.7 113.5 119.99
C1-C2-N1 131.3 130.7 120.39
C2-N1-O1 117.4 117.1 118.50
C1-C3-N4 125.9 125.7 119.59
C3-N4-O3 115.4 115.3 121.89
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Figure 4.11: Torsional barrier for rotation around C2-N1 bond in DNP. Predic-

tion of B3LYP/6-31G+(d,p) calculations(black), MP2/6-31G+(d,p)(green) and HF/6-

31G+(d,p)(red).
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For DNP, the predicted barrier to rotation around the N4-C3 bond is higher than the

rotation around N1-C2 bond. This is due to the location of the nitro group in each case.

The nitro group at C3 is located adjacent to the amide hydrogen and involves in hydrogen

bonding whereas the nitro group at C2 has no amide hydrogens to bond.
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Figure 4.12: Torsional barrier for nitro group (O-N-C-N dihedral) in NTO. Predic-

tion of B3LYP/6-31G+(d,p) calculations(black), MP2/6-31G+(d,p)(green) and HF/6-

31G+(d,p)(red).

Table 4.12: Rotational barriers in kcal/mol for DNP and NTO at 6-31G+(d,p) basis set.

Functional Group B3LYP MP2 HF

DNP
Nitro(N4-C3) 8.88 6.98 9.47
Nitro(N1-C2) 4.82 3.23 5.52

NTO
Nitro 7.60 6.00 6.60

4.5 Conclusion

Optimized structures and barriers to rotation of various substituents for DNAN, MNA,

DNP and NTO have been determined. Calculations were performed at the HF, B3LYP

and MP2 levels of theory with the 6-31G+(d,p) basis set to identify the effects of electron
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correlation. Torsional barriers predicted with MP2 theory were generally lower than B3LYP

and HF calculations, except for the o-nitro group where MP2 predicted the highest barrier.

MP2 theory, however, was found to perform poorly in the determination of the optimized

conformation for MNA; a problem we attribute to the limitations of MP2 in dealing with

molecules with significant resonance structure. The rotational barrier data are used for

developing force fields for the energetic materials of interest.
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Chapter 5

Energetic Materials: Condensed

Phase Properties

5.1 Introduction

Energetic materials often include explosives, propellants and pyrotechnics. The six

energetic compounds studied in this work are 2,4-dinitroanisole (DNAN), N-methyl-p-

nitroaniline (MNA), Dinitropyrazole (DNP), Nitrotriazolone (NTO), 1-methyl-2,4,5-trinitroimidazole

(MTNI) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) whose structures are shown in

Figure 5.1. As seen in the structures, each compound is a hydrocarbon that possesses

atleast one nitro group which is a characteristic of high-energy compounds. NO2-X are

Figure 5.1: Molecular Structure of the energetic materials studied in this work
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relatively easy to break resulting in nitrogen gas and oxygen that helps in oxidizing carbon

and hydrogen to CO, CO2 and H2O.

Of all the compounds listed here, DNAN is one of the oldest IM compounds to be

employed by the military community with its usage dating back to world war II [174,175].

There was renewed interest in DNAN when Picatinny Arsenal explosive (PAX) formula-

tions [176, 177] were designed in the mid 80’s as first high performance insensitive muni-

tions. MNA was used as an additive in these formulations to improve their mechanical

and thermal properties. MNA is also used as a stabilizer to increase the sevice-life of

smoke propellants [178]. TATB and NTO found use in modern polymer-bonded explosives

(PBX) [179] where they are bound in a matrix of a synthetic polymer to make them more

insensitive. TATB also finds use as a detonator in nuclear warheads. DNP and MTNI are

relatively new insensitive energetic materials which are yet to be incorporated into muni-

tions. All the compounds discussed here are reported to be less sensitive than RDX, HMX

and TNT [180–183].

Common energetic materials such as trinitrotoluene (TNT), cyclotrimethylenetrinitr-

amine (RDX), sym-cyclotetramethylene-tetramitramine (HMX) and hexanitrohexaazaisowurtz-

itane (CL-20) have been studied extensively and numerous physical property are available.

For TNT, RDX, HMX and CL-20, aqueous solubility have been measured over a tempera-

ture range of 275-333K [184–186]. Critical temperatures for RDX and HMX [187] and vapor

pressures for RDX, TNT and HMX [188–192] have been measured experimentally. Physic-

ochemical properties such as octanol-water partition coefficients and Henry’s law constant

have also been reported for RDX, TNT, HMX and CL-20 [184,193,194].

In cases where multiple data sets exist for energetic materials, significant differences have
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been observed between some of the data sets. For example, reported values of the aqueous

solubility for TNT may vary by as much as a factor of 2 [195]. For the energetic materials of

interest, very few properties measured from experiment are available. For DNAN and MNA,

octanol-water partition coefficients, Henry’s law constants and aqueous solubility have been

reported [196,197]. Aqueous solubility have been measured for NTO over the temperature

range 284.65 to 367.55 K [198]. The lack of consistent physical property and the acute need

for such data for new energetic materials that may be used to provide prediction of the

environmental fate drives the development of force fields for the compounds of interest.

5.2 Force Field

Initial estimates of the partial charges for each molecule were determined through a

CHELPG analysis by fitting to a electrostatic potential determined from ab initio calcu-

lations performed at the HF/6-31G+(d,p) level of theory and basis set with Gaussian 03.

Four different models were derived for DNAN and MNA by scaling the initial charges by

different factors to find the best set of partial charges that reproduced its octanol-water par-

tition coefficient measured from experiment. The rescaling factors were 1(initial charges),

0.94 and 0.90 for IC, 6C and 10C models respectively. Once the best charge model was

chosen, the same charge scheme was used for the rest of the compounds. The charges for

each functional group in each charge scheme for DNAN and MNA are listed in Table 5.1

and 5.2 respectively.

For DNAN and MNA, united-atom (UA) force fields are developed where, all hydrogens

bonded to carbon atoms are combined with carbon to form a single interaction site (a

pseudo atom) centered on the nucleus of the carbon atom. For all other compounds, an

explicit hydrogen force field was constructed. For the united atom force field, Lennard-Jones
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Table 5.1: Partial charges for DNAN

Site IC 6C 10C

CH-(aro) 0 0 0
C-(O) 0.160 0.150 0.144
O-(CH3) -0.430 -0.402 -0.387
CH3 0.270 0.252 0.243
C-(NO2) 0.120 0.112 0.108
N-(O) 0.820 0.768 0.738
O-(N) -0.470 -0.440 -0.423

Table 5.2: Partial charges for MNA

Site IC 6C 10C

CH-(aro) 0 0 0
C-(NH) 0.200 0.187 0.180
N-(CH3) -0.780 -0.730 -0.702
CH3 0.250 0.234 0.225
C-(NO2) 0.140 0.131 0.126
N-(O) 0.760 0.711 0.684
O-(N) -0.480 -0.449 -0.432
H-(N) 0.390 0.365 0.351

parameters σ and ε for each interaction site were transferred from analogous compounds

previously parametrized in the development of the TraPPE-UA force field [199–202].

In the explicit hydrogen version for DNP, NTO, MTNI and TATB, the Lennard-Jones

parameters for the nitro group were transferred from the explicit model of nitrobenzene

reported in the recent work by Siepmann et al. [203] and the rest from the TraPPE force

field [204] for five-membered rings. The aromatic ring was modeled as explicit hydrogen

wherever necessary. The parameters for the ring were transferred from explicit model

of benzene [203]. The Lennard-Jones parameters and partial charges are listed in the

Appendix. The non-bonded interactions were represented by the Lennard-Jones potential,

the bond vibration and bond bending by a harmonic potential and the torsion by a fourier

cosine series as described in Chapter 3.
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5.3 Thermophysical Properties

5.3.1 Partition Coefficients

Octanol-water Partition Coefficient

The octonol-water partition coefficient (logKow) is related to the free energy of transfer

of the solute between water and water-saturated octanol phase by

∆G = −2.303RT logKow (5.1)

The direct calculation of free energies of transfer between water and octanol phases is

computationally difficult, but possible for small solutes using Gibbs ensemble Monte Carlo

simulation [205]. For larger molecules, however, direct calculation of ∆G is not possible

due to the vanishingly small probability of successfully transfering solutes between phases.

Since the Gibbs free energy is a state function, the free energy difference is independent

of the path and therefore ∆G can be computed via an alternate thermodynamic path as

shown in Figure 5.2 where solute A is slowly transformed to solute B independently in

water and water-saturated octanol phases. This path provides a means for calculating the

relative Gibbs free energy of transfer, which is defined by

∆∆G = ∆GTrB − ∆GTrA = ∆GTr(oct)(A→ B) − ∆GTr(w)(A→ B) (5.2)

where ∆GTr(oct) and ∆GTr(w) are the free energies associated with the transformation of

solute A to solute B in the water-saturated 1-octanol solution and water respectively. The
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A(w)

 A(oct)

B(w)

B(oct)

∆Gw AB

∆Goct AB

∆GTr A ∆GTr B

Figure 5.2: Thermodynamic path for octanol-water partition coefficient

relative partition coefficient is now expressed as

∆ logKow =
−∆∆GTrAB

2.303RT
(5.3)

The most common method to calculate free energy differences is the Free Energy Pertur-

bation (FEP) technique [37, 38]. The FEP method involves slowly transforming solute A

to solute B (either A or B is the compound of interest) by scaling the interaction potential

through

U(λ) = λUB + (1 − λ)UA (5.4)

where λ is the scaling parameter and has values between 0 an 1. The FEP method allows

for the calculation of the relative Gibbs free energy of transfer ∆∆G, from which the

relative octanol-water partition coefficient (∆ logKow) is obtained. The absolute partition

coefficient of target molecule B is then calculated from the reference molecule A by

logKow(B) = ∆ logKow + logKow(A) (5.5)
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Henry’s Law Constant

Henry’s law constant expressed in terms of solvation energy of a solute in water as

derived by Lin et. al. [206] is given by

log10Hi =
∆G∗sol

i/W

RT ln 10
+ log10

RTρ0
w

NA
(5.6)

where ∆G∗sol
i/w is the solvation free energy of species i in solvent water, ρw0 is the number

density of pure water and NA is Avagadro’s number. The solvation free energy of solute i in

water or the hydration free energy is the free energy associated with the transfer of solute

from vacuum to water. Similar to the octanol-water partition coefficient, a thermodynamic

path is constructed, but the water-saturated octanol phase is replaced by the vacuum phase.

Solute i is transformed to j in both water and vacuum phases. The relative Henry’s law

constant can be derived by using Eq. 5.6 and the equation for the Henry’s law constant for

solute j

log10Hj =
∆G∗sol

j/W

RT ln 10
+ log10

RTρ0
w

NA
(5.7)

Subtracting Eq. 5.6 from Eq. 5.7, we obtain an expression for relative Henry’s law constant

∆ log10H =
∆G∗sol

j/W − ∆G∗sol
i/W

2.303RT
(5.8)

The second term in both Eq 5.6 & 5.7 cancels out since the density of pure water is a

constant at any specific temperature. Using a thermodynamic cycle similar to the one used
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for the calculation of octanol-water partition coefficients, Equation 5.8 can be written as

∆ log10H =
∆GTr(w)(i→ j) − ∆GTr(vac)(i→ j)

2.303RT
(5.9)

The absolute Henry’s law constant of solute j is calculated from the knowledge of the

Henry’s law constant for the reference solute i

logH(j) = ∆ logH + logH(i) (5.10)

Simulation Methodology

The FEP technique as implemented in the NAMD simulation engine [118] was used in

the NPT ensemble for computing the partition coefficients. NAMD uses a dual topology

scheme [207,208], where both the initial and the final states are defined concurrently. Each

FEP simulation involves transformation of a solute to the energetic material of interest

or vice versa. The choice of initial solutes depends on structural similarity with the ener-

getic material and availability of experimental partition coefficient data. The solutes used

are listed in the results section. For each solute of interest, three FEP simulations were

performed at 298 K and 1.013 bar; one for the water phase, one for the water-saturated

1-octanol solution and the last for the vacuum phase. The mole fraction of water in the

octanol phase was set to the experimental value of 0.255 [209].

Simulations were also run at 308 and 318 K for DNAN and MNA to investigate the tem-

perature dependence of the partition coefficients. Free energy perturbation was carried out

over 20 windows, where the starting six and the ending six windows were unequally spaced

with very small increments to improve convergence at the end points. This methodology is
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known to avoid the end-point catastrophe [210,211] resulting from the appearing and van-

ishing atoms. λ was increased from 0 to 0.1 and 0.9 to 1 in the following increments: 10−6,

10−5, 10−4, 10−3, 0.01, 0.05 and 0.95, 0.99, 0.999, 0.9999, 0.99999. The windows between 0.1

to 0.9 were equally spaced at 0.1 increments. A non-bonded cutoff of 14 Å was used for all

Lennard-Jones interactions, while the Particle Mesh Ewald (PME) technique [212] was used

to calculate all coulombic interactions. The Langevin piston Nosé-Hoover method [119,120]

was used to control pressure and temperature.

For calculations in vacuum, an isolated hybrid molecule was simulated without periodic

boundary conditions, and a damping coefficient of 10 ps−1 for Langevin temperature control.

The vacuum simulation was carried out for a total of 2.4 ns with 400 ps of equilibration and

2 ns of sampling. In water and octanol phases, FEP calculations were run for a total of 6 ns

with 100 ps of equilibration and 100 ps of sampling for each window. Three iterations were

performed in each phase and the values averaged for the net free energy of transfer which

was used to calculate the partition coefficients. Both forward and reverse perturbations

were run for each transformation to verify convergence of the FEP calculations. A double-

wide sampling method [213] was used, where the free energy difference for each window,

i.e., λi to λi+1 (forward)and λi+1 to λi (reverse) was monitored to test for self-consistency

and hysteresis (difference in the free energy change resulting from forward and reverse

perturbation) of each simulation.

5.3.2 Vapor Liquid Equilibria

Three methods were used to determine the vapor-liquid equilibria for DNAN and MNA:

Gibbs ensemble Monte Carlo (GEMC) [214], Grand Canonical Histogram-Reweighting

Monte Carlo (GCHRMC) [61, 64, 117] and Gibbs-Duhem integration [62]. GEMC was
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selected initially because it provides a direct calculation of phase coexistence. However, the

Gibbs ensemble methodology requires frequent particle removals from one phase and inser-

tion into the other, also known as ’swaps’. Despite the use of state of the art configurational-

bias methods [113], it was unable to achieve a more than a fraction of a percent of accepted

swap moves. Additional calculations were performed with GCMC coupled with histogram

reweighting technique [64]. With these calculations, it was possible to determine the vapor-

liquid equilibria in the region near the critical point but this methodology also was prob-

lematic at lower temperatures due to the difficulty of molecule insertion in a dense liquid

phase. The solution to the problematic particle insertion move was to use Gibbs-Duhem

integration [62].

Simulation Methodology

The initial coexistence point in this work was determined by grand canonical histogram

reweighting Monte Carlo simulations for DNAN and MNA and PVT calculations through

NPT molecular dynamics simulation near the critical point for the rest of the compounds.

The insertion of molecules in the GCMC simulations was enhanced with the application of

the coupled-decoupled configurational-bias Monte Carlo method. The ratios of attempted

moves were set to 60% particle insertions/deletions, 10% configurational-bias regrowths,

15% translations and 15% rotations. A non-bonded cutoff of 14 Å with no tail corrections

was used. For PVT calculations, isotherms were generated at different pressures near

the critical point and densities estimated. One isotherm, where liquid and gas coexists

at a specific pressure is chosen as the initial coexistence (P,T) condition. Treating this

coexistence point as the initial state, Gibbs-Duhem integration was performed with NPT

MD simulations to generate the coexistence densities.
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Given an estimate of the saturation pressure, NPT MD simulations are performed simul-

taneously starting from the initial coexistence point for both liquid and vapor phases to

determine the coexistence densities and heat of vaporization. Averages of volume and ener-

gies are collected from gas and liquid simulations running at predictor pressure. The molar

enthalpy of each phase is calculated from the average volume and energy using,

H =< U > +P < V > (5.11)

where < U > and < V > represent the energy and volume average respectively and P is

the pressure. The difference in molar enthalpy is then used to predict the integrand for

Gibbs-Duhem integration which is given by,

f = −∆H/βP∆V (5.12)

where β=1/T and ∆V is the difference in molar volumes of the gas and liquid phase.

The predictor-corrector formulas use the integrand to predict new pressure (corrected

pressure) using the predictor-corrector formulas and the simulation continues with this new

pressure. This pressure is the vapor pressure at a particular temperature and the volume

averages from this new pressure simulation are used to estimate the coexistence densities.

This process is repeated for different temperatures along the saturation line to estimate

coexistence densities and vapor pressure. The Langevin piston Nosé-Hoover method was

used for temperature and pressure control. A non-bonded cutoff of 14 Å was used for all

the simulations. Subsequent gas and liquid simulations starting from the initial coexistence

point were run at low temperatures with 300 molecules each for 1 ns each with 300 ps of
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Table 5.3: Octanol-water partition coefficients for DNAN and MNA at 298 K

Model DNAN MNA

IC 0.53 0.90
6C 1.64 2.13
10C 1.94 2.52
Exp 1.61 2.10

equilibration and 700 ps of sampling.

5.4 Results and Discussion

5.4.1 Parameter Optimization

Preliminary free energy and vapor-liquid equilibria calculations were run for DNAN and

MNA to find the best set of partial charges that reproduced the octanol-water partition

coefficients and boiling point measured from experiment [196,197,215]. The octanol-water

partition coefficients of DNAN and MNA were predicted for the IC, 6C and 10C models

using anisole and aniline as the reference solutes at 298 K. The experimental octanol-

water partition coefficients of anisole and aniline are 2.11 and 0.90 respectively [216]. The

TraPPE force field [199–202] was used to represent anisole and aniline. The predicted

partition coefficients for each model of DNAN and MNA along with the experimental value

are shown in Table 5.3.

As seen from the table, the value of the octanol-water partition coefficients increase when

the magnitude of the charges are scaled down. This is expected because reduction in the

partial charges of oxygens of the nitro group reduces electrostatic interactions between them

and the hydrogens of water molecules. This also decreases the solubility of the molecule

in water while enhancing it in 1-octanol. So DNAN and MNA prefer partitioning into

the water phase thereby decreasing the octanol-water partition coefficient. The 6C model
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Table 5.4: Phase coexistence properties for DNAN and MNA at 298 K

DNAN MNA

Properties IC 6C 10C IC 6C 10C

Tc(K) 942.25 885.42 881.45 832.41 770.75 757.69
ρc(kg/m3) 408.35 410.20 376.93 346.42 324.50 386.72
Pc(bar) 43.29 37.36 39.14 48.67 37.70 39.62
Tnb(K) 663.16 620.82 613.70 556.94 522.76 515.11
Tb at 12mm Hga 495 461.04 460 - - -

a Exp: 479 K

predicts octanol water partition coefficient within +0.03 log units from the experiment. So

6C model was the best charge scheme that reproduced the measured octanol-water partition

coefficients.

The phase coexistence properties determined for all the models, IC, 6C and 10C of

DNAN and MNA are listed in Table 5.4. The only experimental data with respect to phase

coexistence is the boiling point of DNAN at 12 mm Hg [215]. The IC and 6C models

predict boiling points about 3.5% higher and lower from the experiment respectively. Since

both IC and 6C models of DNAN produced satisfactory results, the deciding factor was

the predicted octanol-water partition coefficients. So the 6C model was chosen as the best

charge scheme and this was adapted for other compounds too. All the calculations were

then continued with the 6C model charge scheme, i.e., the initial ab initio charges were

reduced by 6%.

5.4.2 Partition Coefficients

The reference solutes used to calculate the partition coefficients of the energetic materials

are listed in Table 5.5 along with their octanol-water partition coefficients and Henry’s law

constants. Since no direct Henry’s law constant has been reported in literature for pyrazole,

Henry’s law constant was calculated from experimental vapor pressure and solubility of
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Table 5.5: Partition Coefficients for reference solutes from experiment at 298 K

Molecule logKow logH

Nitrobenzenea 1.85 -3.01
Pyrazoleb 0.02 -7.12
Imidazolec -0.08 -7.86

a [12, 219] b [220] c [221]

pyrazole at 298 K. Henry’s law constant is given by

H =
p

S
(5.13)

where p is the vapor pressure and S is the aqueous solubility. The vapor pressure of pyrazole

at 298 K is 3.638 Pa [217] and solubility in water at 298 K is 19.4 mol/kg of water [218].

The net free energies associated with each transformation in water, water saturated

octanol and vacuum are reported in Table 5.6. Plots for the computed free energies with

respect to the scaling parameter λ in each phase for each transformation are shown in

the Figure 5.3, 5.4, 5.5 and 5.6. The free energies in the plot are averages from three

iterations. The results of the convergence calculations are shown in Table 5.7 and Table 5.8

for MNA and NTO respectively, where i → j denotes the forward perturbation and j → i

the reverse perturbation. MNA and NTO convergence simulations are representative of

other compounds too. The magnitude of the incremental free energies at each λ increment

and the net free energy change for the forward and reverse FEP simulations agree well with

each other indicating negligible hysteresis. The change in sign is due to the difference in

the direction of simulation.

Octanol-water partition coefficients and Henry’s law constants were calculated from the

relative free energies determined from the molecular dynamics simulations, using exper-
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Table 5.6: Free energies predicted in water, water-saturated octanol and vacuum. All ∆G
are in kcal/mol.

Transformation(water) ∆G1
Tr(w) ∆G2

Tr(w) ∆G3
Tr(w) Average

Nitrobenzene - DNAN(1) -16.68 -16.45 -16.66 -16.60±0.12
Nitrobenzene - MNA(2) -1.60 -1.70 -1.82 -1.71±0.11

Pyrazole - DNP(3) 83.75 83.64 84.24 83.87±0.31
Pyrazole - NTO(4) 7.16 6.56 6.42 6.71±0.39

Imidazole - MTNI(5) -84.14 -83.38 -83.97 -83.83±0.39
Nitrobenzene - TATB(6) 64.26 65.54 64.55 64.78±0.67

Water saturated 1-octanol ∆G1
Tr(oct) ∆G2

Tr(oct) ∆G3
Tr(oct) Average

1 -16.15 -16.75 -16.20 -16.37±0.33
2 -1.99 -1.91 -1.86 -1.92±0.06
3 85.16 85.62 84.91 85.23±0.36
4 9.07 9.56 9.62 9.41±0.30
5 -82.80 -83.10 -84.24 -83.38±0.75
6 61.19 61.63 62.63 61.89±0.65

Vacuum ∆G1
Tr(vac) ∆G2

Tr(vac) ∆G3
Tr(vac) Average

1 -11.46 -11.43 -11.41 -11.43±0.02
2 -0.52 -0.52 -0.52 -0.52±0
3 82.85 82.86 82.85 82.85±0
4 13.50 13.51 13.51 13.51±0
5 -81.97 -82.11 -81.74 -81.94±0.18
6 51.88 51.88 51.89 51.88±0.01

imental values of logKow and logH for the reference solutes. The partition coefficients

predicted are presented in Table 5.9, with values predicted using COSMOtherm [222], EPI

Suite [223] and experiment [196,197] for comparison. The predicted Henry’s law constants

are listed in Table 5.10.

The EPI Suite program uses an atom/fragment contribution method for estimating the

partition coefficients. The partition coefficients from simulation are calculated by aver-

aging the forward perturbation results. The octanol-water partition coefficients predicted

by FEP simulations are within ±0.1 log units of experiment for both DNAN and MNA.

While the predictions of the EPI Suite for octanol-water partition coefficients are also in

good agreement with the experiment, COSMOtherm predictions have unsigned errors of
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Figure 5.3: Free energy change for transformation of nitrobenzene to DNAN in water
(black); octanol (red) and vacuum (green) at 298 K and 1.013 bar. Error bars indicate
standard deviation of data.
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Figure 5.4: Free energy change for transformation of nitrobenzene to MNA in water (black);
octanol (red) and vacuum (green) at 298 K and 1.013 bar. Error bars indicate standard
deviation of data.

0.24 (DNAN) and 1.3 (MNA) log units when compared to experiment. Altough KOWWIN

(octanol-water partition coefficient prediction module in EPI) was developed with a training

set of about 2500 molecules and been tested on a dataset of 10200 compounds, it might give

poor predictions for energetic materials since the training set does not include many explo-

sive components. COSMOtherm predicts values that deviate significantly from predictions

of both molecular simulations and the EPI Suite.

The Henry’s law constant predicted from molecular dynamics simulations for MNA
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Figure 5.5: Free energy change for transformation of pyrazole to DNP in water (black);
octanol (red) and vacuum (green). Error bars indicate standard deviation of data.
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Figure 5.6: Free energy change for transformation of pyrazole to NTO in water (black);
octanol (red) and vacuum (green). Error bars indicate standard deviation of data.

Table 5.7: Computed free energies (kcal/mol) from FEP simulations for MNA.

Water Octanol Vacuum
i, j i→ j j → i i→ j j → i i→ j j → i

0,0.1 2.46 -2.11 1.59 -1.51 -0.05 0.05
0.1,0.2 0.13 -0.13 -0.04 0.05 -0.05 0.05
0.2,0.3 0.15 -0.15 -0.25 0.21 -0.05 0.05
0.3,0.4 0.28 -0.28 -0.33 0.32 -0.05 0.05
0.4,0.5 0.39 -0.38 -0.36 0.38 -0.05 0.05
0.5,0.6 0.48 -0.48 -0.38 0.44 -0.05 0.05
0.6,0.7 0.58 -0.57 -0.44 0.49 -0.05 0.05
0.7,0.8 0.66 -0.66 -0.50 0.52 -0.05 0.05
0.8,0.9 -0.80 0.77 -0.57 0.53 -0.05 0.05
0.9,1.0 -0.94 0.92 -0.65 0.68 -0.05 0.05
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Table 5.8: Computed free energies (kcal/mol) from FEP simulations for NTO.

Water

i, j i→ j j → i

0,0.1 6.93 -6.97
0.1,0.2 2.05 -2.00
0.2,0.3 1.48 -1.58
0.3,0.4 1.07 -1.15
0.4,0.5 0.65 -0.63
0.5,0.6 0.23 -0.22
0.6,0.7 -0.24 0.11
0.7,0.8 -0.68 0.57
0.8,0.9 -1.14 1.21
0.9,1.0 -3.80 4.46

Table 5.9: Octanol-water partition Coefficients predicted at 298 K by various methods

Molecule Sim Exp Cosmo EPI

DNAN 1.68 1.61 1.92 1.70
MNA 2.00 2.10 0.80 2.01
DNP -0.97 - 0.37 -0.30
NTO -1.99 - -1.19 -1.56
MTNI -0.40 - 1.64 0.05
TATB -1.86 - 4.74 -1.28

Table 5.10: Henry’s law constants predicted at 298 K by various methods

Molecule Sim Exp EPI

DNAN -6.80 -3.25 -4.91
MNA -3.88 -3.60 -6.17
DNP -6.37 - -8.62
NTO -11.99 - -10.77
MTNI -9.24 - -9.69
TATB -12.56 - -14.45

agrees closely with the experiment while DNAN Henry’s law constant is under-predicted

significantly. For DNAN, the source of error is unclear, since the same model was used to

successfully predict logKow and the boiling point to within 10% of experiment. Although

the relative partitioning between octanol and water was predicted correctly, it is possible

that the model over-predicts the solubility of DNAN in water, leading to a reduced value
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Figure 5.7: DNP inside a 10 Å solvation shell of water-saturated octanol

of the Henry’s law constant. The EPI Suite underpredicts Henry’s law constants of both

DNAN and MNA. This is anticipated because HENRYWIN (Henry’s law constant module

of EPI) relies on a small calibration set of just 345 compounds [224], therefore the predictive

capabilities of the EPI Suite in this respect are more limited.

The octanol-water partition coefficients for DNAN and MNA indicate these compounds

are neither hydrophobic (logKow > 6) nor hydrophilic (logKow < 0) whereas other ener-

getic compounds fall into the hydrophilic category. Molecular level insights into the local

environment around DNP and NTO in water-saturated octanol phases also indicate their

hydrophilicity or affinity towards water since octanol exhibits both hydrophilic (polar head

group) and hydrophobic (hydrocarbon tail) character. Snapshots of a 10 Å solvation shell

around DNP in water-saturated octanol is shown in Figure 5.7.

In the water-saturated octanol phase, DNP is located in a polar region comprising of
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Figure 5.8: Radial distribution function for DNP in water-saturated octanol. DNP oxygen
- water hydrogen (black); DNP hydrogen - octanol oxygen (red); DNP oxygen - octanol
hydrogen (green).

water molecules and polar head group of octanol which is hydrophilic. Octanol molecules

reorient themselves, so that the polar head group is facing the polar region. Extensive

intermolecular hydrogen bonding of DNP with water and octanol (hydroxyl oxygen and

hydrogen) was found in the water-saturated octanol solution. Amide hydrogens of DNP

act as hydrogen donors and oxygens of the nitro group as hydrogen acceptors. Water and

octanol act as both hydrogen donors and acceptors. Figure 5.8 shows instances of hydrogen

bonding of DNP with water and octanol. Similar behavior was observed for NTO in the

water-saturated octanol phase. The presence of hydrogen bonding indicates the strong

affinity of DNP and NTO towards aqueous phase.

Compounds with Henry’s law constant greater than 10−5 atm·m3/mol (logH > −3.4)

are considered highly volatile [225]. Neither of the compounds fall into this category, and

favor the aqueous phase. So they do not have any deleterious effect on the air or atmosphere.

These findings are further illustrated by plotting the predicted partition coefficients in the

multimedia-mobility plot, Figure 5.9 proposed by Gillett [226]. The predicted partition

coefficients are located in the heavy concern area D, which is characterized by direct effects
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Figure 5.9: Mobility and mutimedia exposure chart [226]. Zone A has heavy multimedia-
multispecies concerns and concerns regarding bioaccumulation; zone B has heavy concerns
regarding bioaccumulation; zone C is of heavy concern regarding indirect atmospheric prob-
lems; zone D is of heavy concern for direct effects in water column; zones E and F are of
low ecotoxicologic concern due to very low mobility.

in the water column: leaching to and flow through groundwater and plant root uptake.

Although, NTO, MTNI and TATB are not plotted in the figure, they lie beyond the scale of

the graph but still in zone D characterized by ground water contamination. The compounds

are not predicted to bio-accumulate or induce any atmospheric problems.

5.4.3 Temperature Dependence of Partition Coefficients

The temperature dependence of the octanol-water partition coefficients and Henry’s law

constants was extracted from additional molecular dynamics simulations performed at 308

and 318 K. The octanol-water partition coefficients and Henry’s law constants predicted

at different temperatures for DNAN and MNA are listed in Table 5.11, and plotted vs.

1/T in Figures 5.10 and 5.11, respectively. The data were fit to the van’t Hoff equation
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Table 5.11: Temperature dependence of Partition Coefficients for DNAN & MNA.

DNAN MNA
logKow logH logKow logH

Temp Sim Exp [196] Sim Exp Sim Exp [197] Sim Exp

298 1.68 1.61 -6.80 -3.25 2.00 2.10 -3.88 -3.60
308 1.63 1.54 -6.56 -3.24 1.95 1.98 -3.83 -3.64
318 1.54 1.47 -6.47 -3.23 1.92 1.93 -3.80 -3.68

Table 5.12: Enthalpy and Entropy for water-octanol partitioning.

DNAN MNA
Property Sim Exp [196] Sim Exp [197]

∆G298(kJ/mol) -9.58 -9.22 -11.41 -11.95
∆H(kJ/mol) -12.65 -12.70 -7.27 -15.06
∆S(J/mol/K) -10.27 -11.68 13.83 -10.44

(isochore), which governs the variation of the equilibrium constant with temperature. As

an equilibrium constant, logKow and logH can be expressed as,

logX =
−∆H

2.303RT
+

∆S

2.303R
(5.14)

where X = Kow or H; ∆H and ∆S are enthalpy and entropy of partitioning from the

water to the octanol phase, and are constants over the temperature range studied. ∆H and

∆S are determined from the linear regression fit to the logKow vs 1/T plot. The Gibbs

free energy of partitioning (∆G) at a specific temperature is determined from Eq. 5.1. The

enthalpies and entropies for partitioning of DNAN and MNA between octanol and water

phases are listed in Table 5.12 along with the experimental values. The predicted octanol-

water partition coefficients decrease with increasing temperature and are in good agreement

with experiment. For both DNAN and MNA, transfer from water to octanol is exothermic

which is evident from the negative values of ∆H. Henry’s law constants, plotted as logH
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Figure 5.10: Octanol-water partition coefficient as a function of reciprocal temperature for
DNAN (circle) and MNA (square). Solid line corresponds to the linear regression fit to
simulation data. Filled symbols correspond to experimental values [196,197].
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Figure 5.11: Henry’s law constant as a function of reciprocal temperature for DNAN (circle)
and MNA (square). Solid line corresponds to the linear regression fit to simulation data.
Filled symbols correspond to experimental values [196,197].

vs 1/T are shown in Figure 5.11. A linear regression was used to determine ∆Hv and ∆Sv,

which are listed in Table 5.13 along with the experimental values [196,197].

The predicted Henry’s law constant increases with increasing temperature. A reverse
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Table 5.13: Enthalpy and Entropy for water-air partitioning.

DNAN MNA
Property Sim Exp [196] Sim Exp [197]

∆Hv(kJ/mol) 30.06 2.15 3.15 -6.62
∆Sv(J/mol/K) -28.86 -55.18 -21.63 -91.30

trend was observed for MNA experimentally, where the Henry’s law constant decreased with

increasing temperature, although the decrease is small and the statistical error in the data

is unknown. In general, experiments [227] have shown the same trend as the simulation

data. Therefore it would be advisable to perform additional experiments to identify the

source of the unique behavior for the MNA Henry’s constant with respect to temperature.

The positive enthalpy change indicates that transfer from water to gaseous state is an

endothermic process. Negative entropy of transfer and a positive enthalpy term suggests

that volatilization is neither enthalpy nor entropy driven (the process is not spontaneous)

and the compounds have strong interactions in aqueous solution.

5.4.4 Vapor-Liquid Equilibria

The force field developed can also be used to compute other properties like critical

parameters, boiling points, vapor pressure, heats of vaporization and acentric factor. The

vapor-liquid coexistence curves and critical parameters are useful for the development and

application of equation of state models for these and related compounds. Phase coexistence

properties were determined by Gibbs-Duhem integration by running two simultaneous gas

and liquid simulations. A plot of average total energy and volume with respect to timestep

from a coexistence simulation of DNAN are shown in Figure 5.12 and 5.13 respectively.

Vapor-liquid coexistence curves are presented in Figure 5.14 and 5.16 and vapor pressure

plots in Figure 5.15 and 5.17. Phase coexistence properties were not determined for TATB
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Figure 5.12: Average energy vs. timestep for the liquid (black) and gas (red) simulation at
726.49 K and 5.99 bar.
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Figure 5.13: Average volume vs. timestep for the liquid (black) and gas (red) simulation
at 726.49 K and 5.99 bar.

as it was difficult to simulate a stable gas or liquid phase near the critical temperature

for the initial coexistence point. The phase diagrams should be considered hypothetical,

since these compounds are known to decompose at temperatures near their normal boiling

points.
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Figure 5.14: Vapor-liquid coexistence curves for DNAN (black) and MNA (red) predicted
by molecular dynamics simulations. Line is a fit of simulation data to scaling laws. Filled
symbols correspond to critical points derived from coexistence data.
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Figure 5.15: Clausius-Clapeyron plot for DNAN (black) and MNA (red).

Critical temperatures and densities were computed by fitting the saturated liquid and

vapor densities to the density scaling law for critical temperature [228]

ρliq − ρvap = B(T − Tc)
β (5.15)
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Figure 5.16: Vapor-liquid coexistence curves for DNP (black), MTNI (red) and NTO (green)
predicted by molecular dynamics simulations. Line is a fit of simulation data to scaling laws.
Filled symbols correspond to critical points derived from coexistence data.
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Figure 5.17: Clausius-Clapeyron plot for DNP (circle), MTNI (square) and NTO (triangle)

and the law of rectilinear diameters [229]

ρliq + ρvap
2

= ρc +A(T − Tc) (5.16)
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where β = 0.325 is the critical exponent for Ising-type fluids in three dimensions [230]

and A and B are constants fit to simulation data. The critical parameters, boiling point

and acentric factor are listed in Table 5.14 along with values predicted through group

contribution [222,231].

Table 5.14: Critical Parameters and boiling point

Molecule Tc [K] ρc
[kg/m3]

Pc [bar] Tnb [K] ω

DNANa 885.42 410.20 37.36 620.82 1.54
DNANb 806 - 39.9 588 0.85
MNAa 770.75 324.50 37.70 522.76 1.41
MNAb 748 - 41.7 527 0.65
DNPa 851.21 533.80 66.06 580.27 0.67
DNPb 817 - 69.3 575 3.07
MTNIa 876.24 548.30 50.87 626.52 0.83
MTNIb 845 - 54.7 629 1.21
NTOa 1106.39 494 103.03 709.78 0.54
NTOb 829 - 86 568 0.79
a This work. b Group Contribution [231]

The difference between the values predicted by simulation and group contribution is

more pronounced for DNAN and NTO than any other energetic material. The source

of the difference is unknown although for DNAN, it may be due to the proximity of the

ortho-nitro group and the methoxy group. These effects are taken into account by the

proposed models via the quantum mechanically derived partial charge distributions. Group

contribution methods, while accounting for bonding environment, do not include effects

due to the proximity of other functional groups, limiting their predictive capability. The

experimental boiling point of DNAN at 12 mm Hg is 479 K [215]. The vapor pressure data

from simulation were extrapolated using the Clausius-Clayperon equation to 12 mm Hg

(0.016 bar) and predicted a boiling point of 461.04 K which is about 3.7% lower than the

experiment. Heats of vaporization were calculated as a function of temperature for each
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Figure 5.18: Heat of vaporization for DNAN (black) and MNA (red) predicted from NPT
MD simulations

molecule using the data from NPT molecular dynamics simulations, and Equation 5.17

∆Hv = Uv − Ul + p(Vv − Vl) (5.17)

where subscripts v and l refer to the vapor and liquid phases, respectively. U is the internal

energy per mol and V is the molar volume. The results of these calculations are shown

in Figure 5.18 and Figure 5.19. No experimental heat of vaporization data exists for any

energetic compound of interest to make a comparison.

5.5 Conclusion

Force fields were developed for six energetic materials, DNAN, MNA, DNP, NTO, MTNI

and TATB and the predicted thermo physical properties were found to be in close agreement

(5-10% in most cases) with the scarce experimental data available. Based on the predicted

octanol-water and Henry’s law constants, all compounds studied in this work are predicted

to be problematic with respect to groundwater contamination. In addition to the properties
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Figure 5.19: Heat of vaporization for DNP (black), MTNI (red) and NTO (green) predicted
from NPT MD simulations

calculated in this report, the generalized transferable force fields for energetic materials

presented here may be used to investigate the interactions of energetic materials in a wide

variety of complex systems, including their diffusion and transport in the environment.
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Chapter 6

Energetic Materials: Solid Phase

Properties

6.1 Introduction

Solid phase properties of energetic materials are crucial because most of them exist as

solids at room temperature. More solid phase properties have been measured for energetic

materials than condensed phase properties. So there has been good progress in force field

development to study crystal structure and melting point. Numerous force fields have been

developed for predicting the solid properties of many energetic materials.

An intermolecular potential based on a combination of Buckingham exponential-6 poten-

tial and point charges was developed for the study of crystalline RDX [232]. This potential

was transferable and was used to describe intermolecular interactions of similar energetic

compounds like HMX and HNIW. An improvement to this force field was made by adding

intramolecular interactions from the well-known AMBER force field [233] and making the

molecule flexible. This was referred to as the SRT-AMBER force field [234]. NPT Monte

Carlo (MC) and molecular dynamics (MD) were used to determine various solid properties

using the parametrized force fields. Gee et al. [235] developed a model for 1,3,5-triamino-

2,4,6-trinitrobenzene (TATB) by parametrizing it to solid properties of TATB. In the next

section, force fields used to predict various solid phase properties are presented followed by

simulation methodologies. In the results section, the predicted solid state properties such

as crystal density, lattice parameters for the energetic materials are presented.
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6.2 Force field

An explicit hydrogen (EH) force field was developed for DNAN and MNA for solid

phase calculations. The EH force field for DNAN and MNA was motivated by the poor

performance of the UA force field in the prediction of crystal lattice parameters and solid

densities. In the explicit hydrogen force field, all hydrogens are modeled explicitly, with

their interaction sites centered on respective atomic nuclei. In the explicit hydrogen version,

the Lennard-Jones parameters for the nitro group and the amine group were transferred

from the explicit model of nitrobenzene and aniline respectively reported by Siepmann

et al. [203]. The parameters for the ring carbon and the hydrogen attached to it were

also derived from Siepmann’s force field for nitrobenzene or aniline. The parameters for

the methyl group were obtained from force field for 1,1,1,2-tetrafluoroethane [236]. The

parameters for the alkoxy oxygen and carbon atoms for DNAN were transferred from the

united-atom force field for DNAN. For NTO, MTNI and TATB, the same force fields used

for predicting condensed phase properties were used.

6.3 Methodologies

6.3.1 Crystal Density and Lattice Parameters

Force fields were validated by generating lattice parameters and crystal densities and

comparing them to the experiment. These calculations require knowledge of the exper-

imental crystal structures. The crystal structures determined from the experiment and

their characteristics are listed in Table 6.1. There has been no crystal structure reported

for DNP in the literature, so it is omitted from the following discussion. For the crystal

density and lattice parameter calculations, initial crystal structures were taken from the
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Table 6.1: Crystal structures

Compound Structure Lattice vectors Interaxial Angles

DNAN & MNA1,2 Monoclinic a 6= b 6= c α, γ = 90◦; β 6= 90◦

NTO & TATB3,4 Triclinic a 6= b 6= c α, β, γ 6= 90◦

MTNI5 Orthorhombic a 6= b 6= c α, β, γ = 90◦

1,2 [160,162] 3,4 [173,238] 5 [239]

Cambridge Crystallographic Database [237] and replicated in i, j and k directions to create

a supercell. The key for reproducing the lattice parameters and crystal density is the peri-

odic boundary conditions. Incorrect representation of the periodic boundary may result in

an unstable crystal structure. The vector matrix for any crystal lattice is given by,

V =

















ax ay az

bx by bz

cx cy cz

















where a, b, c are the unit cell dimensions and x, y, z are the corresponding vectors. The

elements of the above matrix varies for each unique crystal structure. If a supercell is cre-

ated by replicating the unitcell by i in x axis, j in y axis and k in z axis, then the vector

matrix for the supercell for each crystal structure is given by,

Orthorhombic:

V =

















ia 0 0

0 jb 0

0 0 kc

















Monoclinic:
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V =

















ia 0 0

0 jb 0

kc. cos(β) 0 kc. sin(β)

















Triclinic:

V =

























ia 0 0

jb. cos(γ) jb. sin(γ) 0

kc. cos(β) kc.(cos(α) − (cos(β). cos(γ)))/ sin(γ) kc.(((sin(β))2 − ((cos(α)−

(cos(β). cos(γ)))/ sin(γ)))2)

























where, α, β and γ are the interaxial angle, i.e., α is the angle between y and z vectors;

β is the angle between x and z vectors; γ is the angle between x and y vectors. Using

these definitions, the vector matrix is generated for each crystal structure for the simu-

lation. NPT molecular dynamics simulations were run at zero pressure and 298 K. The

system was initially heated from 5 K to the target temperature of 298 K using a simulated

annealing technique. The temperature and pressure control methodology is the same as

MD simulations discussed in prior sections. The system was equilibrated for 1 ns, where

first 250 ps was used for equilibration, followed by 750 ps of time averaging for the cell

volume. Electrostatic interactions were computed using the Particle Mesh Ewald method.

The average volume was then used to calculate the crystal density.

6.3.2 Melting Point

The most direct theoretical way of computing the thermodynamic melting point is by

a single NPT MD simulation of the solid. However, the free energy barrier associated with
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the formation of solid-liquid interface induces superheating effects and hysteresis in the

solid-liquid transition. This makes the theoretical prediction of melting point tedious. The

commonly used melting point methods [240] are the thermodynamic integration method,

void-nucleated melting method and the solid-liquid interface method. Another method

which was proposed recently by Luo et al. [241] is the hysteresis method which computes

the melting point with the knowledge of the superheating and the supercooling temperature

using equation

Tmp = T+ + T− −
√

(T+T−) (6.1)

where T+ and T− are the superheating and supercooling temperatures respectively. The

superheating temperature is the temperature at which the solid structure melts. This

temperature is always elevated than the true melting point due to the superheating caused

by the free energy barrier. The supercooling temperature is equivalent to the glass transition

temperature since it is nearly impossible to establish crystallization of liquid to solid in a

simulation. The temperature where, the liquid transforms to an amorphous solid is the

glass transition temperature. The thermodynamic integration method [242–244] is based

on the equality of Gibbs free energy of the solid and liquid at the melting point

gs(P, Tm) = gl(P, Tm) (6.2)

where g(P, T ) is the Gibbs free energy with subscripts s and l referring to the solid and

liquid phases respectively, P is the pressure and Tm refers to the melting point. Although

this can be carried out using Gibbs-Duhem integration, a starting solid-liquid coexistence

point is required to start the integration from.
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In the second method [245–247], voids are introduced in the supercell to eliminate the

free energy barrier. The voids aid in creating nucleation sites that results in formation of

solid-liquid interfaces which remove the free energy barrier. Generally, the melting temper-

ature calculated from a single NPT MD simulation of the crystal without voids is always

higher than the true thermodynamic melting point due to the superheating effects. But

the presence of voids reduces the melting point of the compound until a plateau region

is reached where the melting point is independent of the voids. The temperature corre-

sponding to this plateau region is the thermodynamic melting point. The drawbacks of this

method are that

1. It requires lot of computation time to determine the accurate melting point

2. The plateau region is sometimes narrow and unclear

3. The calculations are sensitive to the number of voids introduced. In case of less num-

ber of voids, not enough solid-liquid interfaces are generated to eliminate superheat-

ing and on the contrary, too many voids results in the collapse of the solid structure.

The solid-liquid interface method is a promising alternative to the thermodynamic

integration and the void nucleation method. Although the method requires large

simulation cells and longer sampling times, recent advancements in computational

resources allows calculation of accurate melting points even for complex materials

like the explosives.

The last method, the solid-liquid interface method [248, 249] is in principle similar to the

void nucleation method since both aid in reducing the free energy barrier. In the solid-liquid

interface method, this is accomplished by having an explicit interface between the solid and
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liquid configuration. Both the phases evolve in the NVE ensemble (constant number of

particles, volume and energy) towards the thermodynamic melting point. In this research,

solid-liquid interface method was used to determine the melting point.

6.4 Results & Discussion

6.4.1 Explicit vs United Atom

Initially, solid phase calculations were run for united atom models of DNAN and MNA

which were used for the prediction of other thermophysical properties. But there were

significant deviation between the predicted lattice parameters and the experimental values.

So all the hydrogens in the CH and CH3 groups are treated explicitly. But having explicit

hydrogens was not sufficient to improve the predictions from the simulations. So, the

Lennard-Jones parameters of the nitro and the amine group were transferred from explicit

models of nitrobenzene and aniline [203]. The model with these parameters improved the

predictions of the united atom force field significantly. Similar behavior was observed for

NTO and MTNI. Although the structures of NTO and MTNI do not have any hydrogens

attached to the ring carbon, the original TraPPE-UA parameters for the nitro and the

amino groups were replaced by the parameters from the explicit nitrobenzene and aniline.

Table 6.2: Crystal parameters and density for MNA

Parameters United atom Explicit (ring) Explicit (nitro & amine) Exp

a (Å) 9.28 10.18 9.78 10.07
b (Å) 6.35 7.17 7.02 6.93
c (Å) 14.05 11.51 11.07 10.81
α 90 90 90 90
β 98.46 101.34 101.32 101.95
γ 90 90 90 90

ρ [g/cm3] 1.22 1.22 1.36 1.36
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Table 6.3: Crystal parameters and density for NTO

Parameters United atom Explicit (nitro & amine) Experiment

a (Å) 5.20 5.21 5.12
b (Å) 10.17 10.50 10.30
c (Å) 20.21 18.32 17.90
α 104.55 106.58 106.70
β 97.06 97.79 97.70
γ 90.04 90.11 90.20
ρ [g/cm3] 1.67 1.81 1.92

Table 6.4: Crystal parameters and density for MTNI

Parameters United atom Explicit (nitro & amine) Experiment

a (Å) 8.76 8.51 8.61

b (Å) 18.58 17.70 17.71
c (Å) 11.07 9.89 10.68
α 90 90 90
β 90 90 90
γ 90 90 90
ρ [g/cm3] 1.59 1.92 1.76

A comparison between the explicit and united atom model parameters for MNA, NTO

and MTNI are presented in Tables 6.2, 6.3 and 6.4 respectively along with the experimental

values. As seen from the tables, the explicit models with explicit hydrogens and new

nitro and amino parameters show significant improvement in the predictions of the unit

cell dimensions, interaxial angle and crystal density of the solid. The effect of including

hydrogens in the force field is significant and alters the solid phase properties unlike the

condensed phase properties. Also the Lennard Jones parameters have to be consistent i.e.,

the LJ parameters of the entire molecule should be derived from either an explicit or the

united atom force field. Mixing of explicit and united atom parameters in a molecules will

yield unreliable or inaccurate predictions.
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6.4.2 Lattice Parameters & Crystal Density

The lattice parameters and density estimated from molecular simulation for explicit

model of DNAN and MNA are presented in Tables 6.5. The solid paramaters predicted for

NTO, MTNI and TATB are listed in Table 6.6. The lattice parameters and crystal density

predicted by simulation for DNAN, MNA, NTO and TATB are in good agreement with

the experiment. For MTNI, simulation under predicts the c dimension and slightly over

predicts the crystal density. Snapshots of the initial crystal structure and the final structure

after the NPT simulation for all the energetic materials are shown in the Figure 6.1, 6.2,

6.3, 6.4 and 6.5. As seen from the figures, all energetic materials remain stable without

any unlikely displacement after the NPT MD simulationa at 298 K and zero pressure.

Table 6.5: Crystal parameters and density for DNAN & MNA

DNAN MNA
Method Sim Exp Sim Exp

a (Å) 9.15 8.77 9.78 10.07
b (Å) 12.23 12.64 7.02 6.93
c (Å) 15.63 15.42 11.07 10.81
α 90 90 90 90
β 81.64 81.89 101.32 101.95
γ 90 90 90 90
ρ [g/cm3] 1.52 1.56 1.36 1.36

Table 6.6: Crystal parameters and density for NTO, MTNI & TATB

NTO MTNI TATB
Method Sim Exp Sim Exp Sim Exp

a (Å) 5.21 5.12 8.51 8.61 8.89 9.01
b (Å) 10.50 10.30 17.70 17.71 8.91 9.02
c (Å) 18.32 17.90 9.89 10.68 6.64 6.81
α 106.58 106.70 90 90 108.77 108.59
β 97.79 97.70 90 90 91.82 91.82
γ 90.11 90.20 90 90 119.95 119.97
ρ [g/cm3] 1.81 1.92 1.92 1.76 2.03 1.93
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Figure 6.1: Crystal structure of DNAN before(left) and after(right) NPT MD simulation

at 0 bar and 298 K.

Figure 6.2: Crystal structure of MNA (3x5x3 matrix) before(left) and after(right) NPT

MD simulation at 0 bar and 298 K.
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Figure 6.3: Crystal structure of NTO (6x3x2 matrix) before(left) and after(right) NPT MD

simulation at 0 bar and 298 K.

Figure 6.4: Crystal structure of MTNI (4x2x3 matrix) before(left) and after(right) NPT

MD simulation at 0 bar and 298 K.
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Figure 6.5: Crystal structure of TATB before(left) and after(right) NPT MD simulation at

0 bar and 298 K.

6.4.3 Melting Point

A solid-liquid interface method based on the work of Watt et al. [250] and Morris et

al. [251] was used to determine the melting point of NTO. A solid-liquid interfacial system

was prepared as follows: in the original supercell, 33% of the molecules were constrained

to fixed coordinates and the rest of the molecules were allowed to move. A few molecules

were permanently removed from the movable region to create solid-liquid interface. The

structure is then subjected to MD simulations in the NVT ensemble around 1000 K for 200

ps to create liquid regions adjacent to the fixed zone. The final configuration of this run is

then used for NPT simulation at temperatures close to the experimental melting point.
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Figure 6.6: Snapshot of solid-liquid interface used for NVE simulations

Subsequent to this, molecular dynamics simulations in the NVE ensemble are used

for equilibration and sampling of temperature and pressure. This final step is repeated

several times by changing the volume of the cell. The resulting temperatures and pressures

are plotted and a linear regression fit is made. The temperature corresponding to the

atmospheric pressure is the melting point. A snapshot of the initial configuration used to

simulate the melting transition in the NVE ensemble is shown in Figure 6.6.
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Figure 6.7: Temperature vs Pressure plot for solid-liquid interface

The temperature-pressure plot from the melting point simulations are presented in Fig-
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ure 6.7. Although pressure and temperature do not have a linear relation, the small range

of temperatures (530-560 K) covered allows assumption of linear dependence. The temper-

ature corresponding to the atmospheric pressure is the melting point of NTO. The melting

point predicted is 538.69 K which is in excellent agreement with the experimental value of

539.35 K [252]. A variant to the above two phase method has also been investigated for

estimation of melting point. This method is based on the work of Vega et al. [253] and also

simulates a solid-liquid interfacial configuration.

A coexisting solid-liquid configuration was generated as discussed in the previous method.

This two phase structure is then subjected to a series of NPT simulations around the exper-

imental melting point of a compound at 1 atm pressure. The energy of the system is mon-

itored with respect to time. If the temperature is above the melting point, the solid region

will melt leading to increase in energy over time while the liquid region will freeze if it is

below the melting point. If the energy value is fluctuating around a constant value, the

temperature is almost at the melting point. Although an accurate melting point could not

be determined through this method, an upper and lower limit for the solid-liquid transition

was observed. For NTO, the calculations suggested the melting point lies between 530 K

and 550 K which is in good agreement with the experimental melting point of 539.35 K.

The method of Vega et al. was continued for MTNI and MNA for predicting the melting

point range. A solid-liquid interfacial configuration was generated by constraining 50% of

the molecules in the original supercell to fixed positions, allowing rest of the system to

move freely by removing few molecules and running a NVT simulation at high temperature

such as 1000K. Series of NPT simulations were run at different temperatures around the

experimental melting point of each compound at 1 atm pressure. For MNA, the original
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supercell was a 3x5x6 matrix and the simulations were carried out at 435, 425, 415 and

410 K since the melting point of MNA measured from experiment is 425.15 K [239]. At

each of these temperatures, the solid structure melted indicating all the temperatures were

above the melting point. This suggests a clear underprediction of the melting temperature.

For MTNI, the original supercell was a 4x2x6 matrix and the melting point available from

experiment is 355.15 K [254]. NPT simulations were run at 300, 350, 360 and 380 K. It was

observed that none of the simulations resulted in melting of the solid portion indicating an

overprediction of the melting temperature range. For DNAN and TATB, a stable coexisting

solid-liquid structure could not be constructed and hence no melting points were predicted

for them.

6.5 Conclusion

The force fields developed to predict condensed phase properties were able to reproduce

the crystal density and lattice parameters for all the energetic materials except for DNAN

and MNA. Separate explicit atom force fields were developed for DNAN and MNA which

predicted lattice parameters and crystal density in good agreement with the experiment.

This demonstrates the sensitivity of the solid state properties to the molecular representa-

tion of atom moieties. Most of the molecules in the solid state are held together by hydrogen

bonding. So inaccurate crystal densities and lattice parameters may result from missing

hydrogen atoms in the force field.
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Chapter 7

Chemical Warfare Agents

7.1 Introdution

The two chemical warfare agents studied in this work are O -isopropyl methylphos-

phonofluoridate (sarin) and O -Pinacolyl methylphosphonofluoridate (soman). Due to the

toxicity of chemical warfare agents, majority of experimental studies are performed with rel-

atively non-toxic simulants. An ideal simulant would mimic relevant chemical and physical

properties of the agent except for its toxicity. Since, no simulant can satisfactorily rep-

resent all thermophysical properties of a nerve agent, developing molecular models would

help in studying these nerve agents without being exposed to them during experiments.

Before constructing force fields for the nerve agents sarin and soman, a force field was

developed for dimethylmethylphosphonate (DMMP), the most common simulant of sarin.

Non-bonded parameters can then be derived for sarin and soman from functionally similar

atom moieties of DMMP without any additional parametrization. A schematic of DMMP,

sarin and soman are shown in Figure 7.1.

Numerous experimental and a very few theoretical studies have been reported for mea-

suring or predicting physical properties of DMMP, sarin and soman. Cuisset et al. [255]

measured the vapor pressure for DMMP using gas-phase chromatography and Tevault et

al. [256] measured the volatility of DMMP in the presence of water to determine the effect

of humidity on DMMP’s vapor pressure. Recently Butrow et al. [257] published vapor

pressures measured for several organophosphorus nerve agent simulant compounds. Vapor

pressures have also been reported for sarin and soman [258,259]. Some theoretical studies
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Figure 7.1: Molecular Structures of a)DMMP; b)Sarin & c)Soman

on DMMP [260], sarin [261] and soman [262] discuss various conformers and the rotational

barriers associated with these compounds. Although various condensed phase properties

of CWAs have been measured experimentally, molecular models would aid in developing

detection or removal techniques which is difficult through experiments. In this context,

the molecular models would be used in simulating the adsorption in carbon pores. The

available properties from experiments are used to validate the force field. In the following

section, force fields used for the molecules of interest and the carbon pore are presented
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7.2 Force Field

7.2.1 Fluid-fluid interactions

Two forcefields, the Vishnyakov and Neimark force field (VN) [263] and the new force

field developed by our group were utilized in this work. Non-bonded interactions for both

forcefields are given by pairwise additive Lennard-Jones 12-6 (LJ) potentials with Coulombic

interactions for partial charges. The partial charges in the new force field were determined

through CHELPG analysis of the electrostatic potential energy surface calculated at HF/6-

31+G(d,p) level of theory and basis sets in Gaussian 03 [109].

The Lennard-Jones parameters for all the functional groups except for P in DMMP were

taken directly from TraPPE-UA force field. Parameters for CH3 comes from TraPPE-UA

force field for alkanes [86], oxygen in O-CH3 from oxygen in ethers [111] and oxygen in O=P

from carboxylic acid [96]. The parameters for phosphorous were tuned to reproduce the

vapor pressure of DMMP over the temperature range 325-408 K [264, 265] and the liquid

densities at 303 and 373 K [266,267]. For sarin and soman, LJ parameters for functionally

similar pseudo atoms were taken from the DMMP model. Fluorine parameters were taken

from the OPLS-AA forcefield [268]. The additional alkyl groups in soman were assigned LJ

parameters from TraPPE-UA force field for branched alkanes [88]. Water was simulated

using SPC/E force field [269]. The LJ parameters and the partial charges for all functional

groups for both force fields are listed in Table 7.1.

Fixed bond lengths were used in the new force field while the VN force field utilizes a

covalent-bond-stretching potential between all interaction sites. A simple harmonic poten-

tial describes angle bending in both force fields. All the bond lengths, bond angles and the

bending force constants are listed in Table 7.2. The torsional potential for the new force
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Table 7.1: Parameters for non-bonded interactions. Parentheses denote functional group
attached to the atom of interest

DMMP ε [K] σ [Å] q [e]

CH3 98.0 3.75 0.28a/-0.14b

O-(CH3) 55.0 2.80 -0.53
O=(P) 79.0 3.05 -0.80
P 86.0 4.00 1.44

Sarin

CH3 98.0 3.75 -0.08b/-0.10c

CH-(O) 10.0 4.68 0.62
O-(CH) 55.0 2.80 -0.63
O=(P) 79.0 3.05 -0.77
P 86.0 4.00 1.40
F 26.7 2.95 -0.34

Soman

CH3 98.0 3.75 -0.08b/-0.10c/-0.15d

CH 10.0 4.33 0.43
C 0.5 6.40 0.54
O-(CH) 55.0 2.80 -0.63
O=(P) 79.0 3.05 -0.77
P 86.0 4.00 1.40
F 26.7 2.95 -0.34

VN Force field

CH3 104.04 3.80 0.131a/-0.021b

O-(CH3) 80.23 3.03 -0.36
O=(P) 80.23 2.93 -0.691
P 174.5 3.83 1.17

a Site adjacent to oxygen. b Site adjacent to phosphorous.
c Site adjacent to CH group. d Site adjacent to C.

Table 7.2: Vibration and bending parameters for DMMP, Sarin and Soman

Vibration Bond length [Å] Bending Bond angle [deg] kθ/kb [K]
P=O 1.458 1.495 6 O=P-CH3 116.3 80586

P-CH3 1.79 6 O=P-O 116.5 100794
P-O 1.58 6 CH3-P-O 104.3 40894

O-CH3 1.41 6 CH3-O-P 121 80586
CH3-CH 1.54 6 O-P-O 106.5 62500
CH-O 1.41 6 CH3-CH-O 106.0 62500
CH-C 1.54 6 CH3-CH-CH3 114 62500
CH3-C 1.54 6 CH3-C-CH3 109.4 62500
F-P 1.58 6 CH3-P-F 104.3 40894
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Table 7.3: Torsional parameters for DMMP, Sarin and Soman

Dihedral c0 c1 c2 c3 f
O=P-O-CH3 1534.91 -1102.11 291.88 397.57 -0.15
CH3-CH-O-P 1041.22 -753.00 432.00 227.00 1.88
CH3-P-O-CH 57.48 1476.00 184.10 0.00 -0.34
O=P-O-CH 2996.00 -1467.00 215.00 -31.60 0.44

CH3-C-CH-O 0.00 176.60 -53.30 769.90 0.00
CH3-C-CH-CH3 0.00 355.00 -68.20 791.30 0.00

field is characterized by the following cosine series

Utors = c0 + c1[1 + cos(φ+ f)] + c2[1 − cos(2φ+ f)] + c3[1 + cos(3φ+ f)] (7.1)

where φ is the dihedral angle and ci are the Fourier constants which are listed in Table 7.3.

These coefficients were determined by fitting Equation 7.1 to the potential energy surfaces

generated from HF/6-31G+(d,p) calculations.

The conformational behavior of DMMP has been studied extensively with ab ini-

tio methods [270–272]. Low-energy conformers and rotational barriers for the P-O-C-C

dihedral in sarin and soman have also been determined from quantum chemical calcula-

tions [273]. In this work, the focus is on developing a reliable approximation of the rotational

barriers for use in the development of the TraPPE force field. Structures optimized with

HF/6-31G+(d,p) compare favorably with the B3LYP results [271], predicting the lowest

energy conformer for DMMP with dihedral angles of -46.93 and -24.81 for the O1=P-O3-C3

and O1=P-O2-C2 dihedrals, respectively. Energetic barriers to dihedral rotation for the

O=P-O-CH3 dihedral in DMMP and the CH3-CH-O-P dihedral in sarin are shown in Fig-

ures 7.2 and 7.3, respectively. For DMMP, additional calculations were performed at the

MP2/6-31G+(d,p) level to determine the effect of theory level on the predicted rotational

barriers. As shown in Figure 7.2, MP2 and HF theories yield similar values for the O=P-
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Figure 7.2: Torsional barrier for O=P-O-CH3 dihedral in DMMP. Prediction of HF/6-
31G+(d,p) calculations (black), MP2/6-31G+(d,p) (green) and fit of Equation 7.1 to data
(line).
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Figure 7.3: Torsional barrier for CH3-CH-O-P dihedral in sarin. Circles represent the
results of HF/6-31G+(d,p) ab inito calculations, while a solid line is used to represent the
fit of Equation 7.1 to the ab initio data.

O-CH3 rotational barriers, which is consistent with similar calculations performed for other

phosphorous containing compounds [274]. These combined results demonstrate the inclu-

sion of electron correlation has little effect on the predicted energy minima or rotational

barriers. Therfore, scanning dihedral angles with higher level theories and larger basis sets
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is not expected to improve the predictive capabilities for the force field. The VN force field

uses a slightly different cosine series to describe the torsional behavior

Utorsion =
6

∑

i=1

Vi(1 + cos(iφ)). (7.2)

where Vi are the fourier coefficients.

7.2.2 Fluid-solid interactions

Carbon slit pore was used as the adsorbent to simulate the adsorption of DMMP, sarin

and soman. The carbon slit pore model consists of two infinite parallel graphitic slab walls

separated by a slit shaped pore. Each wall is made up of Lennard-Jones carbon atoms

with diameter σs and well depth εs and treated as a continuum. The wall surfaces are

assumed to be homogeneous. The potential of the walls is characterized by the 10-4-3

Steele potential [275].

U = 2πρsεσ
2∆

[

2

5

(σ

z

)10
−

(σ

z

)4
−

(

σ4

3∆(z + 0.61∆)3

)]

(7.3)

where ρs = 0.114 Å−3 is the density of carbon, ∆ = 3.354 Å is the spacing between two

adjacent graphene layers, z is the perpendicular distance of an adsorbate molecule from

the wall, εs = 28 K is the well depth and σs = 3.4 Å is the collision diameter of the

carbon atom. The solid-fluid cross interaction parameters σ and ε are calculated using the

Lorentz-Berthelot combining rules. The carbon slit pore has two carbon walls separated

by a width H and the net potential between an adsorbate molecule and the solid walls is

given by,

φ(z) = φ(z) + φ(H − z) (7.4)
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Figure 7.4: Schematic of a carbon slit pore with pore width H

A schematic of the carbon slit pore is given in Figure 7.4.

7.3 Simulation Details

7.3.1 Bulk Fluid Properties

Vapor-liquid coexistence curves, vapor pressures, heats of vaporization, and second virial

coefficients were obtained from histogram reweighting Monte Carlo simulations in the grand

canonical ensemble [61,64,117]. Insertion of molecules were enhanced through the use of the

coupled-decoupled configurational-bias Monte Carlo method [88]. For DMMP and sarin,

10 trial insertions were used for the first atom and 8 trial insertions per site were used for

all remaining sites. For soman, 14 trial insertions for the first atom, and 12 trial insertions

per site were used for all remaining sites. Increasing the number of attempted trial inser-

tions beyond this was found to have a negligible effect on the fraction of accepted particle

transfers. The ratios of attempted moves were set to 60% particle insertions/deletions, 10%

configurational-bias regrowths, 15% translations and 15% rotations. A boxlength of 30 Å

was used for DMMP and sarin while 35 Å was used for soman.

Lennard-Jones interactions were truncated at 14 Å and standard long-range corrections

were applied [276,277]. Electrostatic interactions were calculated using an Ewald sum with
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Table 7.4: Simulation details for VLE calculations

Molecule T (K) µ

DMMP

580 3710
630 4410
680 4580
630 4670
580 4710
530 4685
480 4365
430 3910
380 3490

Sarin

540 15420
590 16520
640 16960
590 16880
540 16850
490 16700
440 16550

Soman

600 -10500
650 -8800
700 -7750
650 -8500
600 -9300
550 -10000
500 -11000
450 -11700

tin-foil boundary conditions [112,123]. All calculations were equilibrated for 1× 106 Monte

Carlo Steps (MCS) followed by production runs of 5×107 MCS in the liquid phase and 1×107

MCS in the vapor phase. Histograms of number of particles and the energy were collected

every 250 MCS during each simulation. Run conditions for all the histograms collected for

each compound are listed in Table 7.4. Statistical uncertainties were determined from the

standard deviation of results produced by three separate simulations started from different

initial configurations and given different random number seeds.

Radial distribution functions and liquid densities at 1 atm at various temperatures

were determined with NPT Monte Carlo simulations. Simulations were performed with
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250 molecules. The ratio of moves were 1% volume changes, 14% configurational-bias

regrowths, 70% translations and 15% rotations. Simulations were equilibrated for 2.5× 107

MCS, and run statistics were recorded for an additional 2.5× 107 MCS. All calculations in

this work were performed with the Monte Carlo simulation engine Towhee [278].

7.3.2 Adsorption

Grand Canonical Monte Carlo simulation was used to obtain pure adsorption isotherms

(pressure vs pore density) of DMMP, sarin and soman for the new force field. In GCMC,

the chemical potential, temperature and the volume are fixed. At equilibrium,the chemical

potential of the pore and the imaginary particle reservoir (bulk phase) are equal. Each

MCS has three attempted moves: displacement of a particle, configurational bias growth

and particle swap. The effect of temperature on the adsorption process is also studied by

running pure adsorption isotherms at four different temperatures, 300K, 375K, 425K and

475K. For desorption isotherms, the final configuration of a completely filled pore for each

compound is used as the initial configuration and pressure is gradually decreased.

Fixed pressure Gibbs ensemble Monte Carlo simulation [122,214] was used to generate

organophosphate-water mixture adsorption isotherms at 300K. In GEMC technique, two

simulation cells were used, one representing the pore and the other the coexisting bulk

phase. The number of particles , volume of the pore and the temperature were fixed.

Unlike GCMC, the pressure of the bulk was fixed. Three types of moves were attempted:

displacement or reorientation of a particle, particle interchange between bulk and pore

and volume change of the bulk. The ratio of the moves were 0.5% for volume change,

30% for particle interchange and rest for displacement or reorientation. The acceptance

rate used for paticle displacement and volume change was 50%. This method allows direct
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calculation of the adsorption isotherm and do not require bulk simulations for computing the

pressure. A bulk fluid molefraction of 0.5 with 200 molecules of water and 200 molecules of

organophosphate was simulated. The system was allowed to equilibrate before any particle

interchange moves were attempted.

The simulation cell was bound by the pore walls in the z-direction. A pore width of

20 Å was used for both the mixture and pure component simulations considering the size

of the molecules. The x and y dimensions of the cell were 50 Å each. Periodic boundary

conditions were applied in the x and y direction. A non-bonded and electrostatic cutoff

equal to half the simulation box length with long-range corrections were used in the x-y

plane. Coulombic interactions between the adsorbate molecules were determined by the

ewald sum technique. The system was equilibrated for 10 million MCS followed by 15

million MCS of sampling.

7.4 Results and Discussion

7.4.1 Condensed Phase Properties

In the case of DMMP, sarin and soman, limited experimental physical property data

are available in the open literature [264, 266, 267, 279]. In Table 7.5, the predictions of the

TraPPE force field for liquid densities at 1 atm and 298 K for sarin and soman, and 303 and

373 K for DMMP, are listed in comparison with experiment. The maximum deviation from

experiment was found for soman, where the liquid density is over-predicted by 4.5%. For

DMMP, the TraPPE force field predicts liquid densities at 303 and 373 K that are within

1% of experimental values. At these conditions, the VN force field also provides a reliable

estimate of the liquid densities for DMMP.

Vapor-liquid coexistence curves predicted by the TraPPE force field are shown in Fig-
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Table 7.5: Liquid densities predicted for DMMP, sarin and soman

Compound ρl(kg/m3) Expt ρl(kg/m3)

DMMP (303 K) 1145.6, [1156.2]a 1150.7 [266]
DMMP (373 K) 1078.0, [1085.3]a 1071.7 [267]
Sarin (298 K) 1123.4 1088.7 [280]
Soman (298 K) 1067 1022 [280]

a Predictions of the VN
force field.

ure 7.5, with the predictions of the VN force field for DMMP included for comparison. The

phase diagrams for sarin and soman should be considered “hypothetical,” since these com-

pounds are known to decompose at temperatures near their normal boiling points. DMMP,

sarin and soman are found to exhibit similar phase behavior, but quantitative differences

are clearly apparent. Critical temperatures and densities were computed by fitting the

saturated liquid and vapor densities to the density scaling law for critical temperature [228]

ρliq − ρvap = B(T − Tc)
β (7.5)

and the law of rectilinear diameters [229]

ρliq + ρvap
2

= ρc +A(T − Tc) (7.6)

where β = 0.325 is the critical exponent for Ising-type fluids in three dimensions [230] and

A and B are constants fit to simulation data. The results of these calculations are listed in

Table 7.6.

Although the TraPPE and VN force fields yield similar liquid densities at 303 K, the

VN force field predicts a Tc that is 100 K higher than TraPPE, illustrating how small
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Figure 7.5: Vapor Liquid Equilibria for pure DMMP (circle ), DMMP-VN (diamond), sarin
(square) and soman (triangle).

Table 7.6: Predicted critical parameters and normal boiling points for DMMP, sarin and
soman

Compound Tc (K) Pc (bar) ρc (kg/m3) Tb (K) Expt Tb (K) ω

DMMP 700.6±0.1 49.7±0.1 368.8±0.1 458.4±0.2 454 [264] 0.39
DMMP-VN 801.1±0.2 52.1±0.1 360.7±0.2 515.2±0.8 454 [264] 0.32
Sarin 629.8±0.9 36.1±0.1 355.4±0.1 427.0±0.3 431 [280] 0.40
Soman 674.9±0.3 29.2±0.1 332.0±0.3 467.6±0.6 471 [280] 0.41

differences in force field parameters can have large effects on predicted phase diagrams.

Comparison of Tc for DMMP, sarin and soman shows DMMP with a critical temperature

70 K greater than that of sarin, while being only 25 K higher than soman’s. Based on

these results, DMMP is expected to provide reasonable qualitative, but not quantitative,

estimates of sarin and soman phase behavior. Experimental vapor pressures for DMMP are

available for 325 ≤ T ≤ 408 K and were used in the refinement of the DMMP force field.

In Figure 7.6, Clausius-Clapeyron plots for DMMP, sarin and soman are presented along

with the experimental vapor pressures.

Through optimization of only the Lennard-Jones ε and σ for the P atom, in DMMP,

it was possible to match closely experimental vapor pressures. The vapor pressures from
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Figure 7.6: Clausius-Clapeyron plot for pure DMMP (circle), DMMP-VN (diamond), sarin
(square) and soman (triangle). Line reperesents the experimental vapor pressure of pure
DMMP (black) [264, 279], sarin (red) [258] and soman (green) [259]. Black diamonds cor-
respond to new set of experimental vapor pressure of pure DMMP [257] and filled symbols
to experimental boiling points [264,280].

simulation for sarin and soman can be extrapolated to match the experimental values.

Normal boiling points were calculated for each molecule. All normal boiling points (see

Table 7.6) were within 1.5% of experiment, which is remarkable considering that no addi-

tional parameter optimization was performed for sarin or soman. The normal boiling point

for DMMP-VN was found to be 515.2, which is a 61.2 K over-prediction compared to exper-

iment. Heats of vaporization were calculated for each molecule as a function of temperature

using histogram data collected for the vapor-liquid equilibria calculations and Equation 7.7

∆Hv = Uv − Ul + p(Vv − Vl) (7.7)

where subscripts v and l refer to the vapor and liquid phases, respectively. U is the internal

energy per mol and V is the molar volume. The results of these calculations are shown

in Figure 7.7. Near 450 K, DMMP and soman were found to have similar heats of

vaporization, while ∆Hv for sarin at 450 K was approximately 10 kJ/mol lower. Heats of



www.manaraa.com

118

400 500 600 700 800
T (K)

10

20

30

40

50

∆H
v (

K
J/

m
ol

)

Figure 7.7: Heat of vaporization for DMMP (circle), DMMP-VN (diamond), Sarin (square)
and soman (triangle)

Table 7.7: Predicted heats of vaporization for DMMP, sarin and soman

Compound Temp(K) Sim (kJ/mol) Expt (kJ/mol)

DMMP 303 54.27±0.7 52.25 [266,267]
DMMP (VN) 303 50.11 [263]
Sarin 298 49.50±0.5 46.89 [280]
Soman 298 53.93±0.3 55.18 [280]

vaporization predicted by the DMMP-VN force field were significantly higher than those

predicted by TraPPE, which was due in large part to having a critical temperature 100

K greater than the TraPPE force field. We also computed heats of vaporization at low

temperatures where experimental data is available through NVT Gibbs Ensemble Monte

Carlo simulation. Histogram reweighting methods were not used for generating this data

since the acceptance rate for the insertion move was very low at those temperatures. The

values determined are reported in Table 7.7 along with the experimental data. The predicted

heats of vaporization are in good agreement with the experiment.

Second virial coefficients were calculated for the TraPPE force field and are listed in
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Table 7.8: Second virial coefficients for DMMP, sarin and soman. Units are cm3/mol

T (K) 650 550 450

DMMP -455.05 -785.44 -1524.00
Sarin -424.81 -699.19 -1363.7
Soman -641.70 -1116.70 -2177.30
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Figure 7.8: Radial distribution function for liquid DMMP at 303 K. New force field (black)
and VN force field (red). a)O1-C1 b)C3-C3 c)P-P d)C1-O2.

Table 7.8. The truncated virial expression is given by

Z = 1 +

(

B

V

)

(7.8)

where Z = PV
RT is the compressibility factor,B is the second virial coefficient and V is the

specific volume. Histograms were reweighted for a series of chemical potentials to determine

the PV T behavior of the compounds at 450, 550 and 650 K. The resulting data were plotted

as Z − 1 vs 1/V . The second virial coefficients were determined by taking the slope of the

regression line fit to data. The magnitude of the second virial coefficients, especially near

the normal boiling point, illustrates non-ideal behavior in the gas phase.
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Figure 7.9: Schematic of DMMP

NPT Monte Carlo simulations were used to investigate the liquid phase structure of the

TraPPE and VN force fields for DMMP at 303 K and 1.01 bar. Radial distribution functions

for various interactions are shown in Figure 7.8 and a schematic of DMMP is presented in

Figure 7.9 for reference. Both force fields provided similar results for the C3-C3 and C1-O2

interactions, while significant differences were observed in the O1-C1 interaction. The VN

force field predicted a slightly more ordered liquid phase, where DMMP molecules were

able to orient themselves to create O1-C1 nearest neighbor interactions. The difference in

the O1-C1 rdf predicted by the VN and TraPPE force field was likely due to differences in

the bonded interactions, which in the case of the TraPPE force field sterically hinder the

formation of O1-C1 nearest neighbor pairs. In the absence of experimental x-ray or neutron

scattering data, it is not possible to determine which force field provides a more accurate

picture of microscopic structure in DMMP.

7.4.2 Adsorption

Having predicted the bulk condensed phase properties with good accuracy, our next

task was to study the physical adsorption characteristics. The pore density was calculated

by

ρpore =
< N >

LxLy(H − σs)
(7.9)



www.manaraa.com

121

0.001 0.01 0.1
Pressure (bar)

0

2

4

6

8

P
or

e 
de

ns
ity

 (
km

ol
/m

3 )

0.0001 0.001 0.01 0.1 1
Pressure (bar)

1e-06 0.0001 0.01 1
0

2

4

6

8

P
or

e 
de

ns
ity

 (
km

ol
/m

3 )

1e-05 1e-04 1e-03 0.01 0.1

a b

c d

Figure 7.10: Adsorption isotherms of pure DMMP (circle),sarin (square) and soman (tri-

angle) for a 20 Å pore. a) 300 K b) 375 K c) 425 K d) 475K

where < N > is the ensemble average of number of molecules adsorbed in the pore, Lx

and Ly are the x and y dimensions of the simulation respectively, H is the pore width

and σs is the collision diameter of the carbon atom of the adsorbate and has a value of

3.4 Å . Figure 7.10 shows the pure adsorption isotherms of each compound at four different

temperatures. DMMP and sarin adsorb almost in the same pressure range whereas soman

adsorbs at a lower pressure range. Figure 7.10 clearly shows this behavior. This may be

due to the presence of additional methyl groups in soman. The maximum amount adsorbed

follows a decreasing order from DMMP to sarin and then soman. This can be attributed

to the increase in molecule size (number of functional groups) from DMMP to soman.

Very little adsorption occurs at low pressures (Henry’s law region) followed by significant

adsorption at high pressures through capillary condensation at temperatures 300 K and 375

K. The vapors of the compounds get adsorbed at low densities and then spontaneously get

condensed to a dense liquid state inside the pore. The sudden jump in the pore density

occurs at a pressure lower than the saturated vapor pressure. Capillary condensation is a
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phenomena in which the bulk vapor-liquid equilibria is altered by confinement in a porous

solid. The pore densities have densities similar to the actual bulk liquid densities. For

DMMP, the maximum pore density is 8.28 kmol/m3 at 300 K which is close to the bulk

liquid density of 9.27 kmol/m3 at 303 K. Similarly, for sarin, the maximum pore density at

298 K is 6.92 kmol/m3 and the bulk liquid density is 7.77 kmol/m3 at 298 K.

At high temperatures, the adsorption occurs by continuous pore filling starting from low

pressures. Visual inspection of the snapshots recorded during the course of the simulation

shown in Figure 7.11 and Figure 7.12 for sarin at 300 K and 475 K support this behavior. At

300 K, the pore fills completely in a single step while at 475 K the pore starts to fill gradually

from low to high pressures. The molecules are adsorbed on the walls first followed by filling

of the volume between the walls. The snapshots presented for sarin are representative of

DMMP and soman since similar behavior was observed for them too. Desorption was also

carried out for DMMP and sarin at 300 K. Figure 7.13 and 7.14 show desorption isotherms

of DMMP and sarin respectively at 300 K. Significant hysteresis which is evident from the

asymmetric paths of adsorption and desorption was observed at 300 K for both DMMP and

sarin. Hysteresis is a result of capillary condensation and is caused by the metastability

in the pore [281, 282]. The desorption curve extends into the liquid region for a wider

pressure range and then drops to almost zero pore densities. The maximum pore density

decreases while temperature increases indicating there would be no capillary condensation

at high temperatures and hysteresis eventually disappears. This has also been demonstrated

with an adsorption and desorption simulation of DMMP in a 10 Å pore width at 525 K.

Adsorption and desorption isotherms from these simulations are presented in Figure 7.15.

There was no deviation of the desorption isotherm from the adsorption curve indicating no
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Figure 7.11: Snapshots of adsorption of sarin in 20 Å pore at 300 K. 3x10−5 bar (top);
5.4x10−5 bar (bottom).

hysteresis at high temperatures.

It is necessary that we also investigate the adsorption of the compounds in mixture with

water since it is more likely that the contaminated air is moist around room temperature.

Mixture adsorption isotherms of the organophosphates with water at 300 K are presented

in figure 7.16. The figures show that the adsorption of the organophosphates is slightly

delayed by the presence of water compared to the pure organophosphate adsorption. The

organophosphate is preferentially adsorbed over water at low pressures followed by adsorp-

tion of water at high pressures due to high dispersion interactions among the phosphate

molecules. Once water molecules starts adsorbing, it forms clusters through hydrogen bond-

ing displacing the phosphate molecules out of the pore resulting in a decreasing trend for

phosphate pore density. A snapshot of water-soman adsorption presented in Figure 7.17

shows formation of clusters of water in the pore. Soman molecules are not shown in the

figure; the bottom adsorbate wall in gray is shown for reference. So at high pressures,

water adsorbs selectively over organophosphates. Instances of hydrogen bonding between

the oxygen double bonded to phosphorous atom and the hydrogens of water in the adsorp-
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Figure 7.12: Snapshots of adsorption of sarin in 20 Å pore at 475 K. a)1.8x10−2 bar;
b)4.9x10−2 bar; c)7.9x10−2 bar; d)12.7x10−2 bar; e)20.5x10−2 bar; f)86.8x10−2 bar.
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Figure 7.13: Adsorption (black) and desorption (red) isotherms of DMMP in 20 Å pore at
300 K.
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Figure 7.14: Adsorption (black) and desorption (red) isotherms of sarin in 20 Å pore at
300 K.
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Figure 7.15: Adsorption (black) and desorption (red) isotherms of DMMP in a 10 Åpore
at 525 K.
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tion of all three compunds were also observed. A snapshot of hydrogen bonding in mixture

(soman-water) adsorption at 300 K is shown in Figure 7.18. All molecules are not displayed

in the figure to clearly view the bonding sequence.
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Figure 7.16: Adsorption isotherms of organophosphate-water mixture for a 20 Å pore at

300 K. Pure component (circle); organophosphate from organophosphate-water mixture

(square); water from organophosphate-water mixture (triangle). a) DMMP K b) Sarin c)

Soman d) DMMP (black) and sarin (red) comparison.
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Figure 7.17: Cluster formation of water in adsorption of soman-water mixture in a pore of

width 20 Å at 300 K and 0.05 bar seen through the top adsorbate wall in the x-y dimension.

Figure 7.18: Few Hydrogen bonding instances in adsorption of soman-water mixture in a

pore of width 20 Å at 300 K and 0.05 bar (Top view of the pore in the x-y dimension).
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7.5 Conclusions

The TraPPE force field has been extended to DMMP, sarin and soman. Excellent

reproduction of limited experimental data was achieved through the introduction of two

additional parameters; the Lennard-Jones σ and ε for the phosphorous atom in DMMP.

Although the VN model predicts liquid densities and heat of vaporization in excellent

agreement with the experiment, it fails to reproduce the boiling point and vapor pressure.

So TraPPE force field for DMMP is better than VN force field considering all the condensed

phase properties. Calculations for sarin and soman were performed in predictive mode (with

no additional parametrization of the force field), and yielded liquid densities and normal

boiling points within 1% of experiment. The hypothetical vapor-liquid coexistence curves

and critical parameters are expected to be of use for equation of state modeling of these

compounds, which generally rely on knowledge of the critical properties and acentric factor.

Pure and mixture adsorption isotherms were also generated. Simulating adsorption has

provided molecular level insights into the interactions under confinement. The force fields

themselves may be used to study a wide range of topics from adsorption and decomposition

in metal oxide substrates to transport and partitioning of chemical agents.
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Chapter 8

Conclusions and Future Work

Molecular models or force fields have been developed for extremely hazardous materials

such as energetic materials and chemical warfare agents. Major advances in the field of

molecular simulation in terms of computer hardware and simulation techniques have made

simulation of complex materials and processes a reality which otherwise would have been

impossible a decade earlier. Computer simulation has served as a valuable alternative tool

for prediction of properties of compounds for which experimental studies are not quite

feasible or difficult to carry out. Some simulation methods are used as a preliminary eval-

uation, screening or testing method before any major experimental process are undergone

saving a considerable amount of time and cost. A wide variety of thermophysical prop-

erties have been predicted which are in good agreement with the available experimental

data. Also, simulations have provided useful insights into the molecular-level interactions

and phenomena.

8.1 Energetic Materials

For energetic materials, various condensed phase properties were predicted with the

developed force fields. Also, the environmental impact of these compounds was also assessed

from the knowledge of partition coefficients. The developed force fields were validated by

prediction of solid state properties such as crystal density and lattice parameters since these

properties were measured experimentally for all the compounds of interest. The predicted

thermophysical properties were in good agreement with the corresponding experimental

values.
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In this research, all the explosive materials of interest are predicted to be ground-water

contaminants. The usage of these compounds may increase in the future leading to severe

contamination of the environment. It is necessary to devise mechanisms or techniques

for effective removal of these contaminants before they cause major health or ecological

problems. Numerous experimental studies have been reported about removal of explosives

from the contaminated environment [283–295]. These studies generally focus on different

methods for environmental remediation to remove the contaminant explosives. Promising

methodologies discussed in these references include adsorption, biodegradation, caltalytic

oxidation and alkaline hydrolysis. Recently, experimental studies on adsorption of DNAN

in activated carbon has been published [296]. It was demonstrated that 99% of DNAN was

removed from the contaminated water. So adsorption is one of the effective methods to

treat contaminated water. Also, theoretically adsorption is a well established technique in

molecular simulation to selectively remove contaminants from an aqueous solution. So with

the developed force field for each explosive and an appropriate model for activated carbon,

it is possible to simulate adsorption of these ground-water contaminants.

Gibbs Ensemble technique [121] can be used to adsorb an aqueous solution of the explo-

sive to generate mixture adsorption isotherms. The predicted partition coefficients can also

be used as an indicator of adsorption efficiency. The partition coefficients are related to

the physical adsorption on solids such as graphitic carbon. The affinity of a compound

to adsorb on a solid surface is directly related to its aqueous solubility or octanol-water

partition coefficient [297]. When two compounds are in question, the one with a higher

hydrophobicity (high octanol-water partition coefficient) have more tendency to adsorb

onto the surface from an aqueous solution at a given concentration. Also, diffusion and
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transport of the explosives in the aqueous medium can be studied with the developed force

fields.

8.2 Chemical Warfare Agents

For chemical warfare agents sarin and soman, the force fields developed were used

to predict various condensed phase properties such as phase coexistence properties and

liquid densities. The predicted properties were in very good agreement with the available

experimental data. The results from this work suggest, DMMP is a very good simulant for

sarin. In addition to the condensed phase calculations, adsorption of the CWAs in carbon

slit pore was modeled. Pure adsorption isotherms of DMMP, sarin and soman and mixture

isotherms of an aqueous solution of the agents were determined.

An interesting follow-up for this research is to do extensive theoretical adsorption studies

of the warfare agents. Looking at the effect of pore size and temperature by running

simulation for different slit pore widths and temperatures will aid in selecting the optimum

pore size and temperature for maximum adsorption of the agents. The effect of adding

active functional group sites to homogeneous carbon wall can be studied by simulating

adsorption in activated carbon. Adsorption of nerve agents in carbon pores or activated

carbon is the preliminary step of prefiltration or concentration prior to their decomposition

on metal oxide substrates. Physiosorption is the fundamental phenomena in adsorption

through carbon adsorbents.

The nerve agents can be effectively removed from contaminated water or air by decom-

posing them in metal oxide substrates such as TiO2, MgO, Al2O3 and ZnO to non toxic

compounds. With an appropriate model for a metal oxide substrate, mixture adsorption

of the contaminated water on the substrate can be simulated. Also, partition coefficients
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can be determined for sarin and soman by free energy perturbation and the environmental

fate predicitive capability of the force field can be assessed by comparing to the available

experimental data. In addition to sarin and soman, force field development can be extended

to other nerve agents such as VX.
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Appendix A

Table A.1: Parameters for non-bonded interactions for Explicit hydrogen DNAN. Paren-
theses denote functional group attached to the atom of interest.

Site σ [Å] ε [K] q [e]

C-(O) 3.60 30.7 0.150
C-(N) 3.60 30.7 0.090,0.142
C-(H) 3.60 30.7 -0.165,-0.165,-0.189
H-(C) 2.36 25.45 0.165,0.165,0.189
C-(H3) 3.60 47 0.132

H(methyl) 2.50 10 0.041
O-(C) 2.80 55 -0.407
N-(O) 2.90 30 0.774,0.723
O-(N) 2.70 42 -0.432

Table A.2: Parameters for non-bonded interactions for Explicit hydrogen MNA. Parentheses
denote functional group attached to the atom of interest.

Site σ [Å] ε [K] q [e]

C-(NO) 3.60 30.7 0.194
C-(NH) 3.60 30.7 0.133
C-(H) 3.60 30.7 -0.154,-0.135,-0.135,-0.151
H-(C) 2.36 25.45 0.151,0.135,0.135,0.151
C-(H3) 3.60 47 0.197

H(methyl) 2.50 10 0.012
N-(O) 2.90 30 0.715
N-(H) 3.26 160 -0.736
O-(N) 2.70 42 -0.454
H-(N) 0.50 12 0.369

Table A.3: Vibration parameters for DNAN and MNA

Bond Molecule Bond length [Å] kb/2 [kcal/mol]

C-C DNAN,MNA 1.40 528.27,529.35
C-NO DNAN,MNA 1.45 363.08,361.61
O-N DNAN,MNA 1.22 866.45,872.54
C-O DNAN 1.32 480.35

O-CH3 DNAN 1.41 289.56
C-NH MNA 1.35 528.94
N-H MNA 0.99 614.35

N-CH3 MNA 1.44 413.41
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Table A.4: Parameters for non-bonded interactions for United atom DNAN and MNA.
Parentheses denote functional group attached to the atom of interest.

Site σ [Å] ε [K] q [e]

CH-(aro) 3.74 48 0
C-(O) 4.50 15 0.150

O-(CH3) 2.80 55 -0.402
C-(NH) 4.50 15 0.187
N-(CH3) 3.52 58 -0.730
H-(N) 0 0 0.365
CH3 3.75 98 0.252a/0.234b

C-(NO2) 4.50 15 0.112a/0.131b

N-(O) 3.31 40 0.768a/0.711b

O-(N) 2.90 80 -0.440a/-0.449b

a DNAN. b MNA.

Table A.5: Bending parameters for DNAN and MNA

Angle Molecule Bond Angle [degree] kθ/2 [kcal/mol]

C-C-C DNAN & MNA 120 189.40
C-C-NO DNAN & MNA 120 154.80
O-N-C DNAN & MNA 111.50 167.90
O-N-O DNAN & MNA 125 181.10
C-C-O DNAN 120 138.72
C-O-C DNAN 112 97.94

C-C-NH MNA 120 145.40
C-NH-C MNA 112.90 73.90
H-N-CH3 MNA 112.90 72.90

Table A.6: Torsional parameters for DNAN and MNA

Dihedral Molecule n ψ0 kψ [kcal/mol]

C-C-C-C DNAN & MNA 2 180 15.230
C-O-C-C DNAN 1,2 180,180 1.467,0.663

O-N-C-C(ortho) DNAN 1,2,3,4 0,0,0,0 0.065,-0.202,0.085,0.571
O-N-C-C DNAN & MNA 1,2 180,180 -0.136,4.351
C-N-C-C MNA 2,4 180,180 3.003,-0.308
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Table A.7: Parameters for non-bonded interactions for DNP. Parentheses denote functional
group attached to the atom of interest

Site σ [Å] ε [K] q [e]

C-(H) 3.60 30.7 -0.309
C-(NO2) 3.60 30.7 0.354
N (ring) 3.20 57 -0.396
N-(H) 3.40 141 -0.023
H-(C) 2.36 25.45 0.206
H-(N) 0.50 12 0.321
N-(O) 2.90 30 0.702
O-(N) 2.70 30 -0.414

Table A.8: Parameters for non-bonded interactions for NTO. Parentheses denote functional
group attached to the atom of interest

Site σ [Å] ε [K] q [e]

C-(NO2) 3.60 30.7 0.408
C-(O) 3.60 30.7 1.689

N (ring) 3.20 57 -0.387
N1-(C) 3.40 141 -0.476
N2-(C) 3.40 141 -0.187
O-(C) 3.05 79 -0.601
H-(N1) 0.50 12 0.349
H-(N2) 0.50 12 0.315
N-(O) 2.90 30 0.722
O-(N) 2.70 42 -0.416

Table A.9: Vibration parameters for DNP

Bond Bond length [Å] kb [Kcal/mol]

C-C 1.40 485.9
C=N 1.30 646.2
N-N 1.30 557.8
N-C 1.34 566.2
C=C 1.35 636.4
C-H 1.07 461.1

C-N(O) 1.43 409.6
N-H 0.99 601.8
N-O 1.18 956.5
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Table A.10: Bending parameters for DNP

Bond Angle Angle [degree] kθ/2 [Kcal/mol]

N-C=N 113.43 290.5
C=N-N 111.97 322.8
N-N-C 101.50 317
N-C-N 108.77 296
C-N-C 128.38 75.6
H-N-C 125.73 123.2

N(O)-C-N 120.49 122
O-N-C 117.16 144.8
O-N-O 126.70 182.2

Table A.11: Vibration parameters for NTO

Bond Bond length [Å] kb [Kcal/mol]

N-C 1.35 459.7
C=N 1.25 932
N-N 1.35 435.9

N-C(O) 1.37 428.8
H-N 0.99 611.6

C-N(O) 1.44 377.1
C=O 1.19 1061
N-O 1.18 1041

Table A.12: Bending parameters for NTO

Bond Angle Angle [degree] kθ/2 [Kcal/mol]

N-C=N 121.55 149.8
C=N-N 103.74 2401.5
N-N-C 113.62 314
N-C-N 101.77 1347.1
C-N-C 106.88 2514.4
H-N-C 127.18 73.3

N(O)-C-N 124.47 149.8
O=C-N 129 136.3
O-N-C 118.10 231.2
O-N-O 127.18 182.2
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Table A.13: Torsional parameters for DNP and NTO

Dihedral Molecule n ψ0 kψ [Kcal/mol]

C=C-N-N DNP 1 180 111.60
C-N-N=C
N-N=C-C DNP 1 0 134.40
N=C-C=C
C-C=C-N DNP 1 180 144.00
C-C=N-N NTO 1 180 50.62
C=N-N-C NTO 1 180 69.83
N-C-N-C
C-N-C=N
N-NC-N NTO 1 180 104.60
O-N-C-C DNP & NTO 1,2 180,180 -0.08,3.29

Table A.14: Parameters for non-bonded interactions for MTNI. Parentheses denote func-
tional group attached to the atom of interest

Site σ [Å] ε [K] q [e]

N-(O) 2.90 30 0.742
O-(N) 2.70 42 -0.404
N(sp2) 3.20 57 -0.529

C(methyl) 3.75 98 0.236
N(ring) 3.40 141 -0.047
C-(NO) 3.60 30.7 0.403,-0.199,0.334

Table A.15: Vibration parameters for MTNI

Bond Bond length [Å] kb [Kcal/mol]

N-O 1.17 1007
C-N(O) 1.44 388.30
C=C 1.35 621.20
C=N 1.27 723.70
C-N 1.34 535.40

C-N(sp2) 1.35 514.10
N-C(sp2) 1.33 529.40
N-C(H3) 1.47 325.30
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Table A.16: Bending parameters for MTNI

Bond Angle Angle [degree] kθ/2 [Kcal/mol]

O-N-O 126.70 182.20
O-N-C 117.12,116.47,118.01 148.50,116.50,140.20
N-C=C 131.50 110.80
N-C-N 123.13 160.40
C=C-N 107.37 296.70
C-N-C 103.50 337.70

C-N-C(H3) 130.60 130.60
N-C=N 114.46 283.70

Table A.17: Torsional parameters for MTNI

Dihedral n ψ0 kψ [Kcal/mol]

N=C-N-C 1 180 123.40
C-N-C=C 1 180 143.80
N-C=C-N 1 180 125.30
C=C-N=C 1 180 134.80
C-N=C-N 1 180 126.20
O-N-C-N 1,2 180,180 -0.059,1.218
O-N-C=C 1,2,3 0,0,0 0.065,0.584,-0.070

Table A.18: Parameters for non-bonded interactions for TATB. Parentheses denote func-
tional group attached to the atom of interest

Site σ [Å] ε [K] q [e]

C-N(O) 3.60 30.7 0.061
C-N(H) 3.60 30.7 0.076
N-(O) 2.90 30 1.131
N-(H) 3.26 160 -1.110
O-(N) 2.70 42 -0.548
H-(N) 0.50 12 0.519

Table A.19: Vibration parameters for TATB

Bond Bond length [Å] kb [Kcal/mol]

O-N 1.20 872.66
N-H 1.01 614.44

C-N(O) 1.43 361.66
C-N(H) 1.32 529.23

C-C 1.43 529.43
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Table A.20: Bending parameters for TATB

Bond Angle Angle [degree] kθ/2 [Kcal/mol]

H-N-C 119.80 73.86
O-N-O 125.00 181.13
H-N-H 120.4 72.9
O-N-C 117.5 167.91
C-C-C 120 189.41

N(H)-C-C 120 145.43
N(O)-C-C 120 154.81

Table A.21: Torsional parameters for TATB

Dihedral n ψ0 kψ [Kcal/mol]

C-C-C-C 2 180 15.230
O-N-C-C 1,2,3,4 180,180,180,180 0.023,4,755,0.017,-1.014
H-N-C-C 1,2,3,4 0,180,0,180 0.023,3.015,-0.451,0.119
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Contamination of military sites by energetic materials and chemical warfare agents is

a growing problem. To avoid health hazards associated with these compounds, it is nec-

essary to decontaminate or remediate the contaminated sites. Effective decontamination

requires knowledge of environmental fate of contaminants and the appropriate remediation

methodologies. While the fate of chemical warfare agents are well studied, the impact of

certain energetic materials in the environment is relatively unknown. So the current focus

is determining environmental fate of Insensitive Munitions (IM) which are energetic mate-

rials that have low shock sensitivity and high thermal stability and developing detection

schemes for identifying chemical warfare agents. For energetic materials, the environmental

fate can be assessed by determining the partition coefficients, especially the octanol-water

and Henry’s law constants (air-water partition coefficient). For chemical warfare agents, the

most important criteria for developing sensors is the detection selectivity. Carbon adsor-

bents are a simple and effective way of increasing the sensor selectivity for the contaminants

by concentration or prefiltration through physical adsorption. So it is essential to study the
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adsorption behavior of the contaminants in carbon slit pores as a preliminary step to the

sensing process.

In this work, molecular modeling or simulation is proposed as a theoretical tool to deter-

mine thermophysical properties that aid in understanding how certain energetic materials

behave in the environment and developing techniques for detecting chemical warfare agents.

Molecular modeling is a promising alternative to experiments due to the hazardous nature

of these compounds and the long experimental time scales involved in their testing. Molec-

ular models or force fields are developed to predict various thermophysical properties. For

energetic materials, atomistic molecular dynamics simulations are used to predict properties

such as octanol-water partition coefficients, Henry’s law constant and also critical parame-

ters, vapor pressure, boiling points, lattice parameters, crystal density, melting points. For

chemical warfare agents, the developed force fields are used to determine their phase coex-

istence properties, vapor pressures, critical parameters, pure and water-compound mixture

adsorption isotherms over carbon slit pore using atomistic monte carlo simulations.

The thermophysical properties predicted for both energetic materials and chemical war-

fare agents are in good agreement with the available experimental data. The partition

coefficients determined for the energetic materials of interest categorize them as ground

water contaminants. The simulation methods presented in this work can be used as pre-

liminary evaluation, screening or testing routines before any major experimental process is

undergone saving a considerable amount of time and cost.
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